fast_gicp - A collection of GICP-based fast point cloud registration algorithms

  •        84

This package is a collection of GICP-based fast point cloud registration algorithms. It constains a multi-threaded GICP as well as multi-thread and GPU implementations of our voxelized GICP (VGICP) algorithm. All the implemented algorithms have the PCL registration interface so that they can be used as an inplace replacement for GICP in PCL. We have tested this package on Ubuntu 18.04/20.04 and CUDA 11.1.

https://github.com/SMRT-AIST/fast_gicp

Tags
Implementation
License
Platform

   




Related Projects

dynamic_robot_localization - Point cloud registration pipeline for robot localization and 3D perception

  •    C++

The dynamic_robot_localization is a ROS package that offers 3 DoF and 6 DoF localization using PCL and allows dynamic map update using OctoMap. It's a modular localization pipeline, that can be configured using yaml files (detailed configuration layout available in drl_configs.yaml and examples of configurations available in guardian_config and dynamic_robot_localization_tests). Even though this package was developed for robot self-localization and mapping, it was implemented as a generic, configurable and extensible point cloud matching library, allowing its usage in related problems such as estimation of the 6 DoF pose of an object and 3D object scanning.

cilantro - A lean C++ library for working with point cloud data

  •    C++

cilantro is a lean and fast C++ library for working with point cloud data, with emphasis given to the 3D case. It includes efficient implementations for a variety of common operations, providing a clean API and attempting to minimize the amount of boilerplate code. The library is extensively templated, enabling operations on data of arbitrary numerical type and dimensionality (where applicable) and featuring a modular/extensible design of the more complex procedures. At the same time, convenience aliases/wrappers for the most common cases are provided. A high-level description of cilantro can be found in our technical report. Documentation (readthedocs.io, Doxygen API reference) is a work in progress. The short provided examples (built by default) cover a significant part of the library's functionality. Most of them expect a single command-line argument (path to a point cloud file in PLY format). One such input is bundled in examples/test_clouds for quick testing.

cupoch - Robotics with GPU computing

  •    C++

Cupoch is a library that implements rapid 3D data processing for robotics using CUDA. The goal of this library is to implement fast 3D data computation in robot systems. For example, it has applications in SLAM, collision avoidance, path planning and tracking. This repository is based on Open3D.

probreg - Python package for point cloud registration using probabilistic model (Coherent Point Drift, GMMReg, SVR, GMMTree, FilterReg, Bayesian CPD)

  •    Python

Probreg is a library that implements point cloud registration algorithms with probablistic model. The point set registration algorithms using stochastic model are more robust than ICP(Iterative Closest Point). This package implements several algorithms using stochastic models and provides a simple interface with Open3D.

pcl - Point Cloud Library (PCL)

  •    C++

The Point Cloud Library (PCL) is a standalone, large scale, open project for 2D/3D image and point cloud processing. PCL is released under the terms of the BSD license, and thus free for commercial and research use. We are financially supported by a consortium of commercial companies, with our own non-profit organization, Open Perception. We would also like to thank individual donors and contributors that have been helping the project.


TEASER-plusplus - A fast and robust point cloud registration library

  •    C++

TEASER++ is a fast and certifiably-robust point cloud registration library written in C++, with Python and MATLAB bindings. Left: correspondences generated by 3DSmoothNet (green and red lines represent the inlier and outlier correspondences according to the ground truth respectively). Right: alignment estimated by TEASER++ (green dots represent inliers found by TEASER++).

cuda-api-wrappers - Thin C++-flavored wrappers for the CUDA Runtime API

  •    C++

nVIDIA's Runtime API for CUDA is intended for use both in C and C++ code. As such, it uses a C-style API, the lowest common denominator (with a few notable exceptions of templated function overloads). This library of wrappers around the Runtime API is intended to allow us to embrace many of the features of C++ (including some C++11) for using the runtime API - but without reducing expressivity or increasing the level of abstraction (as in, e.g., the Thrust library). Using cuda-api-wrappers, you still have your devices, streams, events and so on - but they will be more convenient to work with in more C++-idiomatic ways.

depth_clustering - :taxi: Fast and robust clustering of point clouds generated with a Velodyne sensor

  •    C++

This is a fast and robust algorithm to segment point clouds taken with Velodyne sensor into objects. It works with all available Velodyne sensors, i.e. 16, 32 and 64 beam ones. I recommend using a virtual environment in your catkin workspace (<catkin_ws> in this readme) and will assume that you have it set up throughout this readme. Please update your commands accordingly if needed. I will be using pipenv that you can install with pip.

CudaSift - A CUDA implementation of SIFT for NVidia GPUs (1.6 ms on a GTX 1060)

  •    Cuda

This is the fourth version of a SIFT (Scale Invariant Feature Transform) implementation using CUDA for GPUs from NVidia. The first version is from 2007 and GPUs have evolved since then. This version is slightly more precise and considerably faster than the previous versions and has been optimized for Kepler and later generations of GPUs. On a GTX 1060 GPU the code takes about 1.6 ms on a 1280x960 pixel image and 2.4 ms on a 1920x1080 pixel image. There is also code for brute-force matching of features that takes about 2.2 ms for two sets of around 1900 SIFT features each.

Open3D - Open3D: A Modern Library for 3D Data Processing

  •    C++

Open3D is an open-source library that supports rapid development of software that deals with 3D data. The Open3D frontend exposes a set of carefully selected data structures and algorithms in both C++ and Python. The backend is highly optimized and is set up for parallelization. We welcome contributions from the open-source community. For more, please visit the Open3D documentation.

Arraymancer - A fast, ergonomic and portable tensor library in Nim with a deep learning focus for CPU, GPU, OpenCL and embedded devices

  •    Nim

Arraymancer is a tensor (N-dimensional array) project in Nim. The main focus is providing a fast and ergonomic CPU, Cuda and OpenCL ndarray library on which to build a scientific computing and in particular a deep learning ecosystem. The library is inspired by Numpy and PyTorch. The library provides ergonomics very similar to Numpy, Julia and Matlab but is fully parallel and significantly faster than those libraries. It is also faster than C-based Torch.

VkFFT - Vulkan/CUDA/HIP/OpenCL Fast Fourier Transform library

  •    C++

VkFFT is an efficient GPU-accelerated multidimensional Fast Fourier Transform library for Vulkan/CUDA/HIP/OpenCL projects. VkFFT aims to provide the community with an open-source alternative to Nvidia's cuFFT library while achieving better performance. VkFFT is written in C language and supports Vulkan, CUDA, HIP and OpenCL as backends. Vulkan version: Include the vkFFT.h file and glslang compiler. Provide the library with correctly chosen VKFFT_BACKEND definition (VKFFT_BACKEND=0 for Vulkan). Sample CMakeLists.txt file configures project based on Vulkan_FFT.cpp file, which contains examples on how to use VkFFT to perform FFT, iFFT and convolution calculations, use zero padding, multiple feature/batch convolutions, C2C FFTs of big systems, R2C/C2R transforms, R2R DCT-II, III and IV, double precision FFTs, half precision FFTs. For single and double precision, Vulkan 1.0 is required. For half precision, Vulkan 1.1 is required.

3dmatch-toolbox - 3DMatch - a 3D ConvNet-based local geometric descriptor for aligning 3D meshes and point clouds

  •    C++

Matching local geometric features on real-world depth images is a challenging task due to the noisy, low-resolution, and incomplete nature of 3D scan data. These difficulties limit the performance of current state-of-art methods, which are typically based on histograms over geometric properties. In this paper, we present 3DMatch, a data-driven model that learns a local volumetric patch descriptor for establishing correspondences between partial 3D data. To amass training data for our model, we propose an unsupervised feature learning method that leverages the millions of correspondence labels found in existing RGB-D reconstructions. Experiments show that our descriptor is not only able to match local geometry in new scenes for reconstruction, but also generalize to different tasks and spatial scales (e.g. instance-level object model alignment for the Amazon Picking Challenge, and mesh surface correspondence). Results show that 3DMatch consistently outperforms other state-of-the-art approaches by a significant margin. This code is released under the Simplified BSD License (refer to the LICENSE file for details).

neanderthal - Fast Clojure Matrix Library

  •    Clojure

Neanderthal is a Clojure library for fast matrix and linear algebra computations based on the highly optimized native libraries of BLAS and LAPACK computation routines for both CPU and GPU.. Read the documentation at Neanderthal Web Site.

barefoot - Java library for integrating the map into software and services with state-of-the-art online and offline map matching that can be used stand-alone and in the cloud

  •    Java

An open source Java library for online and offline map matching with OpenStreetMap. Together with its extensive set of geometric and spatial functions, an in-memory map data structure and basic machine learning functions, it is a versatile basis for scalable location-based services and spatio-temporal data analysis on the map. It is designed for use in parallel and distributed systems and, hence, includes a stand-alone map matching server and can be used in distributed systems for map matching services in the cloud. Barefoot consists of a software library and a (Docker-based) map server that provides access to street map data from OpenStreetMap and is flexible to be used in distributed cloud infrastructures as map data server or side-by-side with Barefoot's stand-alone servers for offline (matcher server) and online map matching (tracker server), or other applications built with Barefoot library. Access to map data is provided with a fast and flexible in-memory map data structure. Together with GeographicLib [1] and ESRI's geometry API [2], it provides an extensive set of geographic and geometric operations for spatial data analysis on the map.

Alenka - GPU database engine

  •    Cuda

Vector-based processing CUDA programming model allows a single operation to be applied to an entire set of data at once. Smart compression Ultra fast compression and decompression on GPU. Database operations on compressed data.

cpp-taskflow - Fast C++ Parallel Programming with Task Dependency Graphs

  •    C++

A fast C++ header-only library to help you quickly build parallel programs with complex task dependencies. Cpp-Taskflow lets you quickly build parallel dependency graphs using modern C++17. It supports both static and dynamic tasking, and is by far faster, more expressive, and easier for drop-in integration than existing libraries.

gunrock - High-Performance Graph Primitives on GPUs

  •    Cuda

Gunrock is a CUDA library for graph-processing designed specifically for the GPU. It uses a high-level, bulk-synchronous, data-centric abstraction focused on operations on a vertex or edge frontier. Gunrock achieves a balance between performance and expressiveness by coupling high performance GPU computing primitives and optimization strategies with a high-level programming model that allows programmers to quickly develop new graph primitives with small code size and minimal GPU programming knowledge. For more details, please visit our website, read Why Gunrock, our TOPC 2017 paper Gunrock: GPU Graph Analytics, look at our results, and find more details in our publications. See Release Notes to keep up with the our latest changes.

ethminer - Ethereum miner with OpenCL, CUDA and stratum support

  •    C++

Ethminer is an Ethash GPU mining worker: with ethminer you can mine every coin which relies on an Ethash Proof of Work thus including Ethereum, Ethereum Classic, Metaverse, Musicoin, Ellaism, Pirl, Expanse and others. This is the actively maintained version of ethminer. It originates from cpp-ethereum project (where GPU mining has been discontinued) and builds on the improvements made in Genoil's fork. See FAQ for more details. Standalone executables for Linux, macOS and Windows are provided in the Releases section. Download an archive for your operating system and unpack the content to a place accessible from command line. The ethminer is ready to go.

persistent-rnn - Fast Recurrent Networks Library

  •    C++

A fast implementation of recurrent neural network layers in CUDA. For a GPU, the largest source of on-chip memory is distributed among the individual register files of thousands of threads. For example, the NVIDIA TitanX GPU has 6.3 MB of register file memory, which is enough to store a recurrent layer with approximately 1200 activations. Persistent kernels exploit this register file memory to cache recurrent weights and reuse them over multiple timesteps.






We have large collection of open source products. Follow the tags from Tag Cloud >>


Open source products are scattered around the web. Please provide information about the open source projects you own / you use. Add Projects.