faceswap-GAN - A denoising autoencoder + adversarial losses and attention mechanisms for face swapping

  •        229

Adding Adversarial loss and perceptual loss (VGGface) to deepfakes'(reddit user) auto-encoder architecture. Here is a playground notebook for faceswap-GAN v2.2 on Google Colab. Users can train their own model in the browser without GPU required.

https://github.com/shaoanlu/faceswap-GAN

Tags
Implementation
License
Platform

   




Related Projects

All-About-the-GAN - All About the GANs(Generative Adversarial Networks) - Summarized lists for GAN

  •    Python

The purpose of this repository is providing the curated list of the state-of-the-art works on the field of Generative Adversarial Networks since their introduction in 2014. You can also check out the same data in a tabular format with functionality to filter by year or do a quick search by title here.

pix2pixHD - Synthesizing and manipulating 2048x1024 images with conditional GANs

  •    Python

Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic image-to-image translation. It can be used for turning semantic label maps into photo-realistic images or synthesizing portraits from face label maps. High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs Ting-Chun Wang1, Ming-Yu Liu1, Jun-Yan Zhu2, Andrew Tao1, Jan Kautz1, Bryan Catanzaro1 1NVIDIA Corporation, 2UC Berkeley In arxiv, 2017.

PyTorch-GAN - PyTorch implementations of Generative Adversarial Networks.

  •    Python

Collection of PyTorch implementations of Generative Adversarial Network varieties presented in research papers. Model architectures will not always mirror the ones proposed in the papers, but I have chosen to focus on getting the core ideas covered instead of getting every layer configuration right. Contributions and suggestions of GANs to implement are very welcomed. Synthesizing high resolution photorealistic images has been a long-standing challenge in machine learning. In this paper we introduce new methods for the improved training of generative adversarial networks (GANs) for image synthesis. We construct a variant of GANs employing label conditioning that results in 128x128 resolution image samples exhibiting global coherence. We expand on previous work for image quality assessment to provide two new analyses for assessing the discriminability and diversity of samples from class-conditional image synthesis models. These analyses demonstrate that high resolution samples provide class information not present in low resolution samples. Across 1000 ImageNet classes, 128x128 samples are more than twice as discriminable as artificially resized 32x32 samples. In addition, 84.7% of the classes have samples exhibiting diversity comparable to real ImageNet data.

Keras-GAN - Keras implementations of Generative Adversarial Networks.

  •    Python

Collection of Keras implementations of Generative Adversarial Networks (GANs) suggested in research papers. These models are in some cases simplified versions of the ones ultimately described in the papers, but I have chosen to focus on getting the core ideas covered instead of getting every layer configuration right. Contributions and suggestions of GAN varieties to implement are very welcomed. Implementation of Auxiliary Classifier Generative Adversarial Network.

gan-playground - GAN Playground - Experiment with Generative Adversarial Nets in your browser

  •    TypeScript

GAN Playground lets you play around with Generative Adversarial Networks right in your browser. Currently, it contains three built-in datasets: MNIST, Fashion MNIST, and CIFAR-10. GAN Playground provides you the ability to set your models' hyperparameters and build up your discriminator and generator layer-by-layer. You can observe the network learn in real time as the generator produces more and more realistic images, or more likely, gets stuck in failure modes such as mode collapse.


pytorch-CycleGAN-and-pix2pix - Image-to-image translation in PyTorch (e

  •    Python

This is our PyTorch implementation for both unpaired and paired image-to-image translation. It is still under active development. The code was written by Jun-Yan Zhu and Taesung Park, and supported by Tongzhou Wang.

StarGAN - Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

  •    Python

PyTorch implementation of StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation. StarGAN can flexibly translate an input image to any desired target domain using only a single generator and a discriminator.

T2F - T2F: text to face generation using Deep Learning

  •    Python

Text-to-Face generation using Deep Learning. This project combines two of the recent architectures StackGAN and ProGAN for synthesizing faces from textual descriptions. The project uses Face2Text dataset which contains 400 facial images and textual captions for each of them. The data can be obtained by contacting either the RIVAL group or the authors of the aforementioned paper. The code is present in the implementation/ subdirectory. The implementation is done using the PyTorch framework. So, for running this code, please install PyTorch version 0.4.0 before continuing.

CycleGAN - Software that can generate photos from paintings, turn horses into zebras, perform style transfer, and more

  •    Lua

This package includes CycleGAN, pix2pix, as well as other methods like BiGAN/ALI and Apple's paper S+U learning. The code was written by Jun-Yan Zhu and Taesung Park. Note: Please check out PyTorch implementation for CycleGAN and pix2pix. The PyTorch version is under active development and can produce results comparable or better than this Torch version.

iGAN - Interactive Image Generation via Generative Adversarial Networks

  •    Python

[Project] [Youtube] [Paper] A research prototype developed by UC Berkeley and Adobe CTL. Latest development: [pix2pix]: Torch implementation for learning a mapping from input images to output images. [CycleGAN]: Torch implementation for learning an image-to-image translation (i.e. pix2pix) without input-output pairs. [pytorch-CycleGAN-and-pix2pix]: PyTorch implementation for both unpaired and paired image-to-image translation.

pix2pix - Image-to-image translation with conditional adversarial nets

  •    Lua

Image-to-Image Translation with Conditional Adversarial Networks Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros CVPR, 2017. On some tasks, decent results can be obtained fairly quickly and on small datasets. For example, to learn to generate facades (example shown above), we trained on just 400 images for about 2 hours (on a single Pascal Titan X GPU). However, for harder problems it may be important to train on far larger datasets, and for many hours or even days.

generative-compression - TensorFlow Implementation of Generative Adversarial Networks for Extreme Learned Image Compression

  •    Python

TensorFlow Implementation for learned compression of images using Generative Adversarial Networks. The method was developed by Agustsson et. al. in Generative Adversarial Networks for Extreme Learned Image Compression. The proposed idea is very interesting and their approach is well-described. Training is conducted with batch size 1 and reconstructed samples / tensorboard summaries will be periodically written every certain number of steps (default is 128). Checkpoints are saved every 10 epochs.

really-awesome-gan - A list of papers on Generative Adversarial (Neural) Networks

  •    

A list of papers and other resources on Generative Adversarial (Neural) Networks. This site is maintained by Holger Caesar. To complement or correct it, please contact me at holger-at-it-caesar.com or visit it-caesar.com. Also checkout really-awesome-semantic-segmentation and our COCO-Stuff dataset. NOTE: Despite the enormous interest in this cite (~3000 visitors per month), I will no longer add new papers starting from November 2017. I feel that GANs have come from an exotic topic to the mainstream and an exhaustive list of all GAN papers is no more feasible or useful. However, I invite other people to continue this effort and reuse my list.

the-gan-zoo - A list of all named GANs!

  •    Python

You can also check out the same data in a tabular format with functionality to filter by year or do a quick search by title here. Contributions are welcome. Add links through pull requests in gans.tsv file in the same format or create an issue to lemme know something I missed or to start a discussion.

context-encoder - [CVPR 2016] Unsupervised Feature Learning by Image Inpainting using GANs

  •    Lua

If you could successfully run the above demo, run following steps to train your own context encoder model for image inpainting. Features for context encoder trained with reconstruction loss.

Generative-Adversarial-Networks - Tutorial on GANs

  •    Jupyter

My blog post on GANs and overview of some associated papers. Generative adversarial networks (GANs) are one of the hottest topics in deep learning. From a high level, GANs are composed of two components, a generator and a discriminator. The discriminator has the task of determining whether a given image looks natural (ie, is an image from the dataset) or looks like it has been artificially created. The task of the generator is to create natural looking images that are similar to the original data distribution, images that look natural enough to fool the discriminator network.

text-to-image - Generative Adversarial Text to Image Synthesis / Please Star -->

  •    Python

This is an experimental tensorflow implementation of synthesizing images. The images are synthesized using the GAN-CLS Algorithm from the paper Generative Adversarial Text-to-Image Synthesis. This implementation is built on top of the excellent DCGAN in Tensorflow. N.B You can downloads all data files needed manually or simply run the downloads.py and put the correct files to the right directories.

DiscoGAN-pytorch - PyTorch implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

  •    Jupyter

PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. * All samples in README.md are genearted by neural network except the first image for each row. * Network structure is slightly diffferent (here) from the author's code.

GAN - Resources and Implementations of Generative Adversarial Nets: GAN, DCGAN, WGAN, CGAN, InfoGAN

  •    Python

All have been tested with python2.7+ and tensorflow1.0+ in linux. The final layer can be sigmoid(data: [0,1]) or tanh(data:[-1,1]), my codes all use sigmoid. Using weights_initializer=tf.random_normal_initializer(0, 0.02) will converge faster.