DeepSLAM - Replicating Convolutional Neural Network-based Place Recognition for STAT946

  •        62

Replicating Convolutional Neural Network-based Place Recognition for STAT946. The dataset is the Eynsham dataset from the Oxford Mobile Robotics group. It can be found on Zenodo.

https://github.com/Seanny123/DeepSLAM

Tags
Implementation
License
Platform

   




Related Projects

regl-cnn - Digit recognition with Convolutional Neural Networks in WebGL

  •    Javascript

GPU accelerated handwritten digit recognition with regl. Note that this network will probably be slower than the corresponding network implemented on the CPU. This is because of the overhead associated with transferring data to and from the GPU. But in the future we will attempt implementing more complex networks in the browser, such as Neural Style, and then we think that we will see a significant speedup compared to the CPU.

3D-convolutional-speaker-recognition - :speaker: Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

  •    Python

This repository contains the code release for our paper titled as "Text-Independent Speaker Verification Using 3D Convolutional Neural Networks". The link to the paper is provided as well. The code has been developed using TensorFlow. The input pipeline must be prepared by the users. This code is aimed to provide the implementation for Speaker Verification (SR) by using 3D convolutional neural networks following the SR protocol.

emotion-recognition-neural-networks - Emotion recognition using DNN with tensorflow

  •    Python

This repository is the out project about mood recognition using convolutional neural network for the course Seminar Neural Networks at TU Delft. We use the FER-2013 Faces Database, a set of 28,709 pictures of people displaying 7 emotional expressions (angry, disgusted, fearful, happy, sad, surprised and neutral).

tensorflow-image-detection - A generic image detection program that uses Google's Machine Learning library, Tensorflow and a pre-trained Deep Learning Convolutional Neural Network model called Inception

  •    Python

A generic image detection program that uses Google's Machine Learning library, Tensorflow and a pre-trained Deep Learning Convolutional Neural Network model called Inception. This model has been pre-trained for the ImageNet Large Visual Recognition Challenge using the data from 2012, and it can differentiate between 1,000 different classes, like Dalmatian, dishwasher etc. The program applies Transfer Learning to this existing model and re-trains it to classify a new set of images.

LargeMargin_Softmax_Loss - Implementation for <Large-Margin Softmax Loss for Convolutional Neural Networks> in ICML'16

  •    C++

We introduce a large-margin softmax (L-Softmax) loss for convolutional neural networks. L-Softmax loss can greatly improve the generalization ability of CNNs, so it is very suitable for general classification, feature embedding and biometrics (e.g. face) verification. We give the 2D feature visualization on MNIST to illustrate our L-Softmax loss. The paper is published in ICML 2016 and also available at arXiv.


Activity-Recognition-with-CNN-and-RNN - Temporal Segments LSTM and Temporal-Inception for Activity Recognition

  •    Lua

In this work, we demonstrate a strong baseline two-stream ConvNet using ResNet-101. We use this baseline to thoroughly examine the use of both RNNs and Temporal-ConvNets for extracting spatiotemporal information. Building upon our experimental results, we then propose and investigate two different networks to further integrate spatiotemporal information: 1) temporal segment RNN and 2) Inception-style Temporal-ConvNet. Our analysis identifies specific limitations for each method that could form the basis of future work. Our experimental results on UCF101 and HMDB51 datasets achieve state-of-the-art performances, 94.1% and 69.0%, respectively, without requiring extensive temporal augmentation.

lip-reading-deeplearning - :unlock: Lip Reading - Cross Audio-Visual Recognition using 3D Architectures

  •    Python

The input pipeline must be prepared by the users. This code is aimed to provide the implementation for Coupled 3D Convolutional Neural Networks for audio-visual matching. Lip-reading can be a specific application for this work. Audio-visual recognition (AVR) has been considered as a solution for speech recognition tasks when the audio is corrupted, as well as a visual recognition method used for speaker verification in multi-speaker scenarios. The approach of AVR systems is to leverage the extracted information from one modality to improve the recognition ability of the other modality by complementing the missing information.

clDNN - Compute Library for Deep Neural Networks (clDNN)

  •    C++

Compute Library for Deep Neural Networks (clDNN) is an open source performance library for Deep Learning (DL) applications intended for acceleration of DL Inference on Intel® Processor Graphics – including HD Graphics and Iris® Graphics. clDNN includes highly optimized building blocks for implementation of convolutional neural networks (CNN) with C and C++ interfaces. We created this project to enable the DL community to innovate on Intel® processors. Usages supported: Image recognition, image detection, and image segmentation.

easy-tensorflow - Simple and comprehensive tutorials in TensorFlow

  •    Python

The goal of this repository is to provide comprehensive tutorials for TensorFlow while maintaining the simplicity of the code. Each tutorial includes a detailed explanation (written in .ipynb) format, as well as the source code (in .py format).

cnn_graph - Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

  •    Jupyter

Michaël Defferrard, Xavier Bresson, Pierre Vandergheynst, Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering, Neural Information Processing Systems (NIPS), 2016. Clone this repository.

Android-Object-Detection - :coffee: Fast-RCNN and Scene Recognition using Caffe

  •    Java

Get the Caffe model and push it to Phone SDCard. For object detection, network(*.prototxt) should use ROILayer, you can refer to Fast-RCNN. For scene recognition(object recognition), it can use any caffe network and weight with memory input layer. Scene recognition - Convolutional neural networks trained on Places Input a picture of a place or scene and predicts it.

artistic-style-transfer - Convolutional neural networks for artistic style transfer.

  •    Jupyter

This repository contains (TensorFlow and Keras) code that goes along with a related blog post and talk (PDF). Together, they act as a systematic look at convolutional neural networks from theory to practice, using artistic style transfer as a motivating example. The blog post provides context and covers the underlying theory, while working through the Jupyter notebooks in this repository offers a more hands-on learning experience. If you have any questions about any of this stuff, feel free to open an issue or tweet at me: @copingbear.

saliency - TensorFlow implementation for SmoothGrad, Grad-CAM, Guided backprop, Integrated Gradients and other saliency techniques

  •    Jupyter

If the sign of the value given by the saliency mask is not important, then use VisualizeImageGrayscale, otherwise use VisualizeImageDiverging. See the SmoothGrad paper for more details on which visualization method to use. This example iPython notebook shows these techniques is a good starting place.

sod - An Embedded Computer Vision & Machine Learning Library (CPU Optimized & IoT Capable)

  •    C

SOD is an embedded, modern cross-platform computer vision and machine learning software library that expose a set of APIs for deep-learning, advanced media analysis & processing including real-time, multi-class object detection and model training on embedded systems with limited computational resource and IoT devices. SOD was built to provide a common infrastructure for computer vision applications and to accelerate the use of machine perception in open source as well commercial products.

Bender - Easily craft fast Neural Networks on iOS! Use TensorFlow models. Metal under the hood.

  •    Swift

Bender is an abstraction layer over MetalPerformanceShaders useful for working with neural networks. Bender is an abstraction layer over MetalPerformanceShaders which is used to work with neural networks. It is of growing interest in the AI environment to execute neural networks on mobile devices even if the training process has been done previously. We want to make it easier for everyone to execute pretrained networks on iOS.

NiftyNet - An open-source convolutional neural networks platform for research in medical image analysis and image-guided therapy

  •    Python

NiftyNet is a consortium of research organisations (BMEIS -- School of Biomedical Engineering and Imaging Sciences, King's College London; WEISS -- Wellcome EPSRC Centre for Interventional and Surgical Sciences, UCL; CMIC -- Centre for Medical Image Computing, UCL; HIG -- High-dimensional Imaging Group, UCL), where BMEIS acts as the consortium lead. NiftyNet is not intended for clinical use.

LSTM-Human-Activity-Recognition - Human Activity Recognition example using TensorFlow on smartphone sensors dataset and an LSTM RNN (Deep Learning algo)

  •    Jupyter

Compared to a classical approach, using a Recurrent Neural Networks (RNN) with Long Short-Term Memory cells (LSTMs) require no or almost no feature engineering. Data can be fed directly into the neural network who acts like a black box, modeling the problem correctly. Other research on the activity recognition dataset can use a big amount of feature engineering, which is rather a signal processing approach combined with classical data science techniques. The approach here is rather very simple in terms of how much was the data preprocessed. Let's use Google's neat Deep Learning library, TensorFlow, demonstrating the usage of an LSTM, a type of Artificial Neural Network that can process sequential data / time series.

crnn - Convolutional Recurrent Neural Network (CRNN) for image-based sequence recognition.

  •    Lua

This software implements the Convolutional Recurrent Neural Network (CRNN), a combination of CNN, RNN and CTC loss for image-based sequence recognition tasks, such as scene text recognition and OCR. For details, please refer to our paper http://arxiv.org/abs/1507.05717. UPDATE Mar 14, 2017 A Docker file has been added to the project. Thanks to @varun-suresh.