meanrecipe - Get a consensus recipe for your next meal. :cookie: :cake:

  •        5

Sometimes when I want a recipe to cook something new I will find several recipes for the same thing and try to use them as a guide to generate an average or "consensus" recipe. This code should make it easy to generate consensus recipes (useful!) and also show variation between recipes (interesting!). Finding a consensus recipe requires first clustering many recipes. This is because a single recipe (e.g. a recipe for brownies) might have many significant variations (e.g. brownies can have just cocoa, just chocolate, or both). This code will first cluster recipes and then use the clusters to deliver the consensus recipe.

https://www.averagecookbook.com
https://github.com/schollz/meanrecipe

Tags
Implementation
License
Platform

   




Related Projects

food-101-keras - Food Classification with Deep Learning in Keras / Tensorflow

  •    Jupyter

If you are reading this on GitHub, the demo looks like this. Please follow the link below to view the live demo on my blog. Convolutional Neural Networks (CNN), a technique within the broader Deep Learning field, have been a revolutionary force in Computer Vision applications, especially in the past half-decade or so. One main use-case is that of image classification, e.g. determining whether a picture is that of a dog or cat.

TensorFlow-Machine-Learning-Cookbook - Code repository for TensorFlow Machine Learning Cookbook by Packt

  •    Python

This is the code repository for TensorFlow Machine Learning Cookbook, published by Packt. It contains all the supporting project files necessary to work through the book from start to finish. TensorFlow is an open source software library for Machine Intelligence. The independent recipes in this book will teach you how to use TensorFlow for complex data computations and will let you dig deeper and gain more insights into your data than ever before. You’ll work through recipes on training models, model evaluation, sentiment analysis, regression analysis, clustering analysis, artificial neural networks, and deep learning – each using Google’s machine learning library TensorFlow.

Jubatus - Framework and Library for Distributed Online Machine Learning

  •    C++

Jubatus is a distributed processing framework and streaming machine learning library. Jubatus includes these functionalities: Online Machine Learning Library: Classification, Regression, Recommendation (Nearest Neighbor Search), Graph Mining, Anomaly Detection, Clustering, Feature Vector Converter (fv_converter): Data Preprocess and Feature Extraction, Framework for Distributed Online Machine Learning with Fault Tolerance.

openfoodnetwork - Connect suppliers, distributors and consumers to trade local produce

  •    Ruby

The Open Food Network is an online marketplace for local food. It enables a network of independent online food stores that connect farmers and food hubs (including coops, online farmers' markets, independent food businesses etc); with individuals and local businesses. It gives farmers and food hubs an easier and fairer way to distribute their food. Supported by the Open Food Foundation and a network of global affiliates, we are proudly open source and not-for-profit - we're trying to seriously disrupt the concentration of power in global agri-food systems, and we need as many smart people working together on this as possible.

infer - Infer.NET is a framework for running Bayesian inference in graphical models

  •    CSharp

Infer.NET is a framework for running Bayesian inference in graphical models. It can also be used for probabilistic programming. One can use Infer.NET to solve many different kinds of machine learning problems - from standard problems like classification, recommendation or clustering through to customised solutions to domain-specific problems.


mahout - Mirror of Apache Mahout

  •    Java

Mahout's goal is to build scalable machine learning libraries. With scalable we mean: Scalable to reasonably large data sets. Our core algorithms for clustering, classification and batch based collaborative filtering are implemented on top of Apache Hadoop using the map/reduce paradigm. However we do not restrict contributions to Hadoop based implementations: Contributions that run on a single node or on a non-Hadoop cluster are welcome as well. The core libraries are highly optimized to allow for good performance also for non-distributed algorithms. Scalable to support your business case. Mahout is distributed under a commercially friendly Apache Software license. Scalable community. The goal of Mahout is to build a vibrant, responsive, diverse community to facilitate discussions not only on the project itself but also on potential use cases. Come to the mailing lists to find out more. Currently Mahout supports mainly four use cases: Recommendation mining takes users' behavior and from that tries to find items users might like. Clustering takes e.g. text documents and groups them into groups of topically related documents. Classification learns from existing categorized documents what documents of a specific category look like and is able to assign unlabelled documents to the (hopefully) correct category. Frequent itemset mining takes a set of item groups (terms in a query session, shopping cart content) and identifies, which individual items usually appear together.

Apache Mahout - Scalable machine learning library

  •    Java

Apache Mahout has implementations of a wide range of machine learning and data mining algorithms: clustering, classification, collaborative filtering and frequent pattern mining.

practical-machine-learning-with-python - Master the essential skills needed to recognize and solve complex real-world problems with Machine Learning and Deep Learning by leveraging the highly popular Python Machine Learning Eco-system

  •    Jupyter

"Data is the new oil" is a saying which you must have heard by now along with the huge interest building up around Big Data and Machine Learning in the recent past along with Artificial Intelligence and Deep Learning. Besides this, data scientists have been termed as having "The sexiest job in the 21st Century" which makes it all the more worthwhile to build up some valuable expertise in these areas. Getting started with machine learning in the real world can be overwhelming with the vast amount of resources out there on the web. "Practical Machine Learning with Python" follows a structured and comprehensive three-tiered approach packed with concepts, methodologies, hands-on examples, and code. This book is packed with over 500 pages of useful information which helps its readers master the essential skills needed to recognize and solve complex problems with Machine Learning and Deep Learning by following a data-driven mindset. By using real-world case studies that leverage the popular Python Machine Learning ecosystem, this book is your perfect companion for learning the art and science of Machine Learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute Machine Learning systems and projects successfully.

food-inspections-evaluation - This repository contains the code to generate predictions of critical violations at food establishments in Chicago

  •    HTML

This is our model for predicting which food establishments are at most risk for the types of violations most likely to spread food-borne illness. Chicago Department of Public Health staff use these predictions to prioritize inspections. During a two month pilot period, we found that that using these predictions meant that inspectors found critical violations much faster. You can help improve the health of our city by improving this model. This repository contains a training and test set, along with the data used in the current model.

Oryx 2 - Lambda architecture on Apache Spark, Apache Kafka for real-time large scale machine learning

  •    Java

The Oryx open source project provides infrastructure for lambda-architecture applications on top of Spark, Spark Streaming and Kafka. On this, it provides further support for real-time, large scale machine learning, and end-to-end applications of this support for common machine learning use cases, like recommendations, clustering, classification and regression.

rumale - Rumale is a machine learning library in Ruby

  •    Ruby

Rumale (Ruby machine learning) is a machine learning library in Ruby. Rumale provides machine learning algorithms with interfaces similar to Scikit-Learn in Python. Rumale supports Linear / Kernel Support Vector Machine, Logistic Regression, Linear Regression, Ridge, Lasso, Kernel Ridge, Factorization Machine, Naive Bayes, Decision Tree, AdaBoost, Gradient Tree Boosting, Random Forest, Extra-Trees, K-nearest neighbor classifier, K-Means, K-Medoids, Gaussian Mixture Model, DBSCAN, SNN, Power Iteration Clustering, Mutidimensional Scaling, t-SNE, Principal Component Analysis, Kernel PCA and Non-negative Matrix Factorization. This project was formerly known as "SVMKit". If you are using SVMKit, please install Rumale and replace SVMKit constants with Rumale.

Smile - Statistical Machine Intelligence & Learning Engine

  •    Java

Smile (Statistical Machine Intelligence and Learning Engine) is a fast and comprehensive machine learning, NLP, linear algebra, graph, interpolation, and visualization system in Java and Scala. With advanced data structures and algorithms, Smile delivers state-of-art performance.Smile covers every aspect of machine learning, including classification, regression, clustering, association rule mining, feature selection, manifold learning, multidimensional scaling, genetic algorithms, missing value imputation, efficient nearest neighbor search, etc.

TensorFlow-Book - Accompanying source code for Machine Learning with TensorFlow

  •    Jupyter

This is the official code repository for Machine Learning with TensorFlow. Get started with machine learning using TensorFlow, Google's latest and greatest machine learning library.

Minibar

  •    C

Minibar is a bartending application designed for Palm handhelds and licensed under GPL. It can be useful for food recipes as well. Its database includes 594 mixed drinks. Features include filtering, import/export of recipes and a customizable database.

Accord.NET - Machine learning, Computer vision, Statistics and general scientific computing for .NET

  •    CSharp

The Accord.NET project provides machine learning, statistics, artificial intelligence, computer vision and image processing methods to .NET. It can be used on Microsoft Windows, Xamarin, Unity3D, Windows Store applications, Linux or mobile.

tensorrec - A TensorFlow recommendation algorithm and framework in Python.

  •    Python

A TensorFlow recommendation algorithm and framework in Python. TensorRec is a Python recommendation system that allows you to quickly develop recommendation algorithms and customize them using TensorFlow.

Java Machine Learning Library

  •    Java

Java Machine Learning Library is a library of machine learning algorithms and related datasets. Machine learning techniques include: clustering, classification, feature selection, regression, data pre-processing, ensemble learning, voting, ...

Nutrition Show(Dev-wow)

  •    

This is a little daily tool about nutrition. You can find the content of the given food, find more nutrient food which you would chosen when you don't know what should be eat today, and find less calorie food for women on diet. This project can be extended as family show proj...