tsfeatures - Time series features

  •        546

The R package tsfeatures provides methods for extracting various features from time series data. The stable version on R CRAN is coming soon.

https://github.com/robjhyndman/tsfeatures

Tags
Implementation
License
Platform

   




Related Projects

tsfresh - Automatic extraction of relevant features from time series:

  •    Jupyter

"Time Series Feature extraction based on scalable hypothesis tests". The package contains many feature extraction methods and a robust feature selection algorithm.

meyda - Audio feature extraction for JavaScript.

  •    Javascript

Meyda is a Javascript audio feature extraction library. Meyda supports both offline feature extraction as well as real-time feature extraction using the Web Audio API. We wrote a paper about it, which is available here. Please see the documentation for setup and usage instructions.

CausalImpact - An R package for causal inference in time series

  •    R

This R package implements an approach to estimating the causal effect of a designed intervention on a time series. For example, how many additional daily clicks were generated by an advertising campaign? Answering a question like this can be difficult when a randomized experiment is not available. The package aims to address this difficulty using a structural Bayesian time-series model to estimate how the response metric might have evolved after the intervention if the intervention had not occurred.As with all approaches to causal inference on non-experimental data, valid conclusions require strong assumptions. The CausalImpact package, in particular, assumes that the outcome time series can be explained in terms of a set of control time series that were themselves not affected by the intervention. Furthermore, the relation between treated series and control series is assumed to be stable during the post-intervention period. Understanding and checking these assumptions for any given application is critical for obtaining valid conclusions.

deltapy - DeltaPy - Tabular Data Augmentation (by @firmai)

  •    Jupyter

Animated investment research at Sov.ai, sponsoring open source initiatives. Tabular augmentation is a new experimental space that makes use of novel and traditional data generation and synthesisation techniques to improve model prediction success. It is in essence a process of modular feature engineering and observation engineering while emphasising the order of augmentation to achieve the best predicted outcome from a given information set. DeltaPy was created with finance applications in mind, but it can be broadly applied to any data-rich environment.

Gnocchi - Time series database

  •    Python

Gnocchi is an open-source |time series| database. The problem that Gnocchi solves is the storage and indexing of |time series| data and resources at a large scale. This is useful in modern cloud platforms which are not only huge but also are dynamic and potentially multi-tenant. Gnocchi takes all of that into account. Gnocchi has been designed to handle large amounts of aggregates being stored while being performant, scalable and fault-tolerant. While doing this, the goal was to be sure to not build any hard dependency on any complex storage system.


Grafana - The leading graph and dashboard builder for visualizing time series metrics

  •    Go

Grafana is an open source, feature rich metrics dashboard and graph editor for Graphite, Elasticsearch, OpenTSDB, Prometheus and InfluxDB. It is most commonly used for visualizing time series data for Internet infrastructure and application analytics but many use it in other domains including industrial sensors, home automation, weather, and process control.

CarND-Alexnet-Feature-Extraction - This lab guides you through using AlexNet and TensorFlow to build a feature extraction network

  •    Python

This lab guides you through using AlexNet and TensorFlow to build a feature extraction network.

openSMILE

  •    C++

SMILE = Speech amp; Music Interpretation by Large Space Extraction openSMILE is a fast, real-time (audio) feature extraction utility for automatic speech, music and paralinguistic recognition research developed at TUM in the scope of the EU-project SEMA

flint - A Time Series Library for Apache Spark

  •    Scala

The ability to analyze time series data at scale is critical for the success of finance and IoT applications based on Spark. Flint is Two Sigma's implementation of highly optimized time series operations in Spark. It performs truly parallel and rich analyses on time series data by taking advantage of the natural ordering in time series data to provide locality-based optimizations. Flint is an open source library for Spark based around the TimeSeriesRDD, a time series aware data structure, and a collection of time series utility and analysis functions that use TimeSeriesRDDs. Unlike DataFrame and Dataset, Flint's TimeSeriesRDDs can leverage the existing ordering properties of datasets at rest and the fact that almost all data manipulations and analysis over these datasets respect their temporal ordering properties. It differs from other time series efforts in Spark in its ability to efficiently compute across panel data or on large scale high frequency data.

TeaFiles.Net - time series storage

  •    

Store time series data in flat files. The TeaFile format allows data exchange between programs written in C#, C++, Python, or applications like R, Octave, Matlab.

forecast - forecast package for R

  •    R

The R package forecast provides methods and tools for displaying and analysing univariate time series forecasts including exponential smoothing via state space models and automatic ARIMA modelling. You can install the stable version from CRAN.

quantmod - Quantitative Financial Modelling Framework

  •    R

quantmod is an R package that provides a framework for quantitative financial modeling and trading. It provides a rapid prototyping environment that makes modeling easier by removing the repetitive workflow issues surrounding data management and visualization. Ask your question on Stack Overflow or the R-SIG-Finance mailing list (you must subscribe to post).

SiriDB - Highly-scalable, robust and super fast time series database

  •    C

SiriDB is a highly-scalable, robust and super fast time series database. Build from the ground up SiriDB uses a unique mechanism to operate without indexes and allows server resources to be added on the fly. SiriDB's unique query language includes dynamic grouping of time series for easy and super fast analysis over large amount's of time series.

Beringei - High performance, in-memory storage engine for time series data.

  •    C++

In the fall of 2015, we published the paper “Gorilla: A Fast, Scalable, In-Memory Time Series Database” at VLDB 2015. Beringei is the open source representation of the ideas presented in this paper. Beringei is a high performance time series storage engine. Time series are commonly used as a representation of statistics, gauges, and counters for monitoring performance and health of a system.

Akumuli - Time-series database

  •    C++

Akumuli is a time-series database for modern hardware. It can be used to capture, store and process time-series data in real-time. The word "akumuli" can be translated from Esperanto as "accumulate".

gluon-ts - GluonTS - Probabilistic Time Series Modeling in Python

  •    Python

GluonTS is a Python toolkit for probabilistic time series modeling, built around Apache MXNet (incubating). GluonTS provides utilities for loading and iterating over time series datasets, state of the art models ready to be trained, and building blocks to define your own models and quickly experiment with different solutions.

R Language - Project for Statistical Computing

  •    C

R is a language and environment for statistical computing and graphics. It is a GNU project which is similar to the S language. R provides a wide variety of statistical (linear and nonlinear modelling, classical statistical tests, time-series analysis, classification, clustering, ...) and graphical techniques, and is highly extensible.

atspy - AtsPy: Automated Time Series Models in Python (by @firmai)

  •    Python

Animated investment research at Sov.ai, sponsoring open source initiatives. Easily develop state of the art time series models to forecast univariate data series. Simply load your data and select which models you want to test. This is the largest repository of automated structural and machine learning time series models. Please get in contact if you want to contribute a model. This is a fledgling project, all advice appreciated.

InfluxDB - Distributed Time Series Database

  •    Go

InfluxDB is an open-source, distributed, time series database with no external dependencies. It's useful for recording metrics, events, and performing analytics. Everything in InfluxDB is a time series that you can perform standard functions on like min, max, sum, count, mean, median, percentiles, and more. Collect your data on any interval and compute rollups on the fly later.

Cubism.js - Time Series Visualization

  •    Javascript

Cubism.js is a D3 plugin for visualizing time series. Use Cubism to construct better realtime dashboards, pulling data from Graphite, Cube and other sources. Cubism fetches time series data incrementally: after the initial display, Cubism reduces server load by polling only the most recent values. Cubism renders incrementally, too, using Canvas to shift charts one pixel to the left.






We have large collection of open source products. Follow the tags from Tag Cloud >>


Open source products are scattered around the web. Please provide information about the open source projects you own / you use. Add Projects.