PandasToPowerpoint - Python utility to take a Pandas DataFrame and create a Powerpoint table

  •        136

Converts a Pandas DataFrame to a PowerPoint table on the given Slide of a PowerPoint presentation. The table is a standard Powerpoint table, and can easily be modified with the Powerpoint tools, for example: resizing columns, changing formatting etc.

https://github.com/robintw/PandasToPowerpoint

Tags
Implementation
License
Platform

   




Related Projects

modin - Modin: Speed up your Pandas workflows by changing a single line of code

  •    Python

Modin uses Ray to provide an effortless way to speed up your pandas notebooks, scripts, and libraries. Unlike other distributed DataFrame libraries, Modin provides seamless integration and compatibility with existing pandas code. Even using the DataFrame constructor is identical. To use Modin, you do not need to know how many cores your system has and you do not need to specify how to distribute the data. In fact, you can continue using your previous pandas notebooks while experiencing a considerable speedup from Modin, even on a single machine. Once you’ve changed your import statement, you’re ready to use Modin just like you would pandas.

pdpipe - Easy pipelines for pandas DataFrames.

  •    Python

Easy pipelines for pandas DataFrames. Some pipeline stages require scikit-learn; they will simply not be loaded if scikit-learn is not found on the system, and pdpipe will issue a warning. To use them you must also install scikit-learn.

Marketstore - DataFrame Server for Financial Timeseries Data

  •    Go

MarketStore is a database server optimized for financial timeseries data. You can think of it as an extensible DataFrame service that is accessible from anywhere in your system, at higher scalability. It is designed from the ground up to address scalability issues around handling large amounts of financial market data used in algorithmic trading backtesting, charting, and analyzing price history with data spanning many years, including tick-level for the all US equities or the exploding crypto currencies space. If you are struggling with managing lots of HDF5 files, this is perfect solution to your problem.

100-pandas-puzzles - 100 data puzzles for pandas, ranging from short and simple to super tricky (60% complete)

  •    Jupyter

Inspired by 100 Numpy exerises, here are 100* short puzzles for testing your knowledge of pandas' power. Since pandas is a large library with many different specialist features and functions, these excercises focus mainly on the fundamentals of manipulating data (indexing, grouping, aggregating, cleaning), making use of the core DataFrame and Series objects. Many of the excerises here are straightforward in that the solutions require no more than a few lines of code (in pandas or NumPy - don't go using pure Python!). Choosing the right methods and following best practices is the underlying goal.

pandas-datareader - Extract data from a wide range of Internet sources into a pandas DataFrame.

  •    HTML

Up to date remote data access for pandas, works for multiple versions of pandas. As of v0.6.0 Yahoo!, Google Options, Google Quotes and EDGAR have been immediately deprecated due to large changes in their API and no stable replacement.


statistical-analysis-python-tutorial - Statistical Data Analysis in Python

  •    HTML

Chris Fonnesbeck is an Assistant Professor in the Department of Biostatistics at the Vanderbilt University School of Medicine. He specializes in computational statistics, Bayesian methods, meta-analysis, and applied decision analysis. He originally hails from Vancouver, BC and received his Ph.D. from the University of Georgia. This tutorial will introduce the use of Python for statistical data analysis, using data stored as Pandas DataFrame objects. Much of the work involved in analyzing data resides in importing, cleaning and transforming data in preparation for analysis. Therefore, the first half of the course is comprised of a 2-part overview of basic and intermediate Pandas usage that will show how to effectively manipulate datasets in memory. This includes tasks like indexing, alignment, join/merge methods, date/time types, and handling of missing data. Next, we will cover plotting and visualization using Pandas and Matplotlib, focusing on creating effective visual representations of your data, while avoiding common pitfalls. Finally, participants will be introduced to methods for statistical data modeling using some of the advanced functions in Numpy, Scipy and Pandas. This will include fitting your data to probability distributions, estimating relationships among variables using linear and non-linear models, and a brief introduction to bootstrapping methods. Each section of the tutorial will involve hands-on manipulation and analysis of sample datasets, to be provided to attendees in advance.

blaze - NumPy and Pandas interface to Big Data

  •    Python

Blaze translates a subset of modified NumPy and Pandas-like syntax to databases and other computing systems. Blaze allows Python users a familiar interface to query data living in other data storage systems. We point blaze to a simple dataset in a foreign database (PostgreSQL). Instantly we see results as we would see them in a Pandas DataFrame.

sparklingpandas - Sparkling Pandas

  •    Python

SparklingPandas aims to make it easy to use the distributed computing power of PySpark to scale your data analysis with Pandas. SparklingPandas builds on Spark's DataFrame class to give you a polished, pythonic, and Pandas-like API. See SparklingPandas.com.

pynamical - Pynamical is a Python package for modeling and visualizing discrete nonlinear dynamical systems, chaos, and fractals

  •    Python

pynamical uses pandas, numpy, and numba for fast simulation, and matplotlib for visualizations and animations to explore system behavior. Compatible with Python 2 and 3. Pynamical comes packaged with the logistic map, the Singer map, and the cubic map predefined. The models may be run with a range of parameter values over a set of time steps, and the resulting numerical output is returned as a pandas DataFrame. Pynamical can then visualize this output in various ways, including with bifurcation diagrams, two-dimensional phase diagrams, three-dimensional phase diagrams, and cobweb plots.

pygdf - GPU Data Frame

  •    Jupyter

PyGDF implements the Python interface to access and manipulate the GPU Dataframe of GPU Open Analytics Initialive (GOAI). We aim to provide a simple interface that similar to the Pandas dataframe and hide the details of GPU programming.

dash - Interactive, Reactive Web Apps for Python. Dash Is Productive™

  •    Python

Build on top of Plotly.js, React, and Flask, Dash ties modern UI elements like dropdowns, sliders, and graphs directly to your analytical python code. Here’s a 43-line example of a Dash App that ties a Dropdown to a D3.js Plotly Graph. As the user selects a value in the Dropdown, the application code dynamically exports data from Google Finance into a Pandas DataFrame. This app was written in just 43 lines of code (view the source).

datasheets - Read data from, write data to, and modify the formatting of Google Sheets

  •    Python

datasheets is a library for interfacing with Google Sheets, including reading data from, writing data to, and modifying the formatting of Google Sheets. It is built on top of Google's google-api-python-client and oauth2client libraries using the Google Drive v3 and Google Sheets v4 REST APIs. It can be installed with pip via pip install datasheets.

PyDataset - Instant access to many datasets in Python.

  •    Python

Provides instant access to many datasets right from Python (in pandas DataFrame structure). That's it. See more examples.

sparkmagic - Jupyter magics and kernels for working with remote Spark clusters

  •    Python

Sparkmagic is a set of tools for interactively working with remote Spark clusters through Livy, a Spark REST server, in Jupyter notebooks. The Sparkmagic project includes a set of magics for interactively running Spark code in multiple languages, as well as some kernels that you can use to turn Jupyter into an integrated Spark environment. There are two ways to use sparkmagic. Head over to the examples section for a demonstration on how to use both models of execution.

Gemini - Simple backtesting for sleepless cryptocurrency markets

  •    Python

If you have your own data that has/hasn't been processed, you should conform to the following structure. Basically, load your data into a Pandas dataframe object and be sure to convert the dates to datetime format and include the following lowercase column titles. If you don't have your own data, we've included a useful function for grabbing historical charting data from the Poloniex exchange. In this example, we'll trade the BTC/ETH pair on a 30 minute timeframe. To demonstrate the versatility of our data grabber, we will ignore the last 30 days of data in our backtest and look at the 60 days before then. With the poloniex helper function, it's easy to do that.

vaex - Lazy Out-of-Core DataFrames for Python, visualize and explore big tabular data at a billion rows per second

  •    Python

Vaex is a python library for Out-of-Core DataFrames (similar to Pandas), to visualize and explore big tabular datasets. It can calculate statistics such as mean, sum, count, standard deviation etc, on an N-dimensional grid up to a billion (109) objects/rows per second. Visualization is done using histograms, density plots and 3d volume rendering, allowing interactive exploration of big data. Vaex uses memory mapping, zero memory copy policy and lazy computations for best performance (no memory wasted).

pydruid - A Python connector for Druid

  •    Python

pydruid exposes a simple API to create, execute, and analyze Druid queries. pydruid can parse query results into Pandas DataFrame objects for subsequent data analysis -- this offers a tight integration between Druid, the SciPy stack (for scientific computing) and scikit-learn (for machine learning). pydruid can export query results into TSV or JSON for further processing with your favorite tool, e.g., R, Julia, Matlab, Excel. It provides both synchronous and asynchronous clients. Additionally, pydruid implements the Python DB API 2.0, a SQLAlchemy dialect, and a provides a command line interface to interact with Druid.

xarray - N-D labeled arrays and datasets in Python

  •    Python

xarray (formerly xray) is an open source project and Python package that aims to bring the labeled data power of pandas to the physical sciences, by providing N-dimensional variants of the core pandas data structures. Our goal is to provide a pandas-like and pandas-compatible toolkit for analytics on multi-dimensional arrays, rather than the tabular data for which pandas excels. Our approach adopts the Common Data Model for self- describing scientific data in widespread use in the Earth sciences: xarray.Dataset is an in-memory representation of a netCDF file.

django-rest-pandas - πŸ“ŠπŸ“ˆ Serves up Pandas dataframes via the Django REST Framework for use in client-side (i

  •    Python

Django REST Pandas (DRP) provides a simple way to generate and serve pandas DataFrames via the Django REST Framework. The resulting API can serve up CSV (and a number of other formats) for consumption by a client-side visualization tool like d3.js. The design philosophy of DRP enforces a strict separation between data and presentation. This keeps the implementation simple, but also has the nice side effect of making it trivial to provide the source data for your visualizations. This capability can often be leveraged by sending users to the same URL that your visualization code uses internally to load the data.