enpls - Algorithmic framework for measuring feature importance, outlier detection, model applicability evaluation, and ensemble predictive modeling with (sparse) partial least squares regressions

  •        5

enpls offers an algorithmic framework for measuring feature importance, outlier detection, model applicability domain evaluation, and ensemble predictive modeling with (sparse) partial least squares regressions. See the vignette (or open with vignette("enpls") in R) for a quick-start guide.

https://enpls.org
https://github.com/road2stat/enpls

Tags
Implementation
License
Platform

   




Related Projects

LWPR

  •    Python

Locally Weighted Projection Regression (LWPR)

MLIB - Apache Spark's scalable machine learning library

  •    Scala

MLlib is a Spark implementation of some common machine learning algorithms and utilities, including classification, regression, clustering, collaborative filtering, dimensionality reduction and lot more.

Pyod - A Python Toolkit for Scalable Outlier Detection (Anomaly Detection)

  •    Python

Important Notes: PyOD contains some neural network based models, e.g., AutoEncoders, which are implemented in keras. However, PyOD would NOT install keras and tensorflow automatically. This would reduce the risk of damaging your local installations. You are responsible for installing keras and tensorflow if you want to use neural net based models. An instruction is provided here. Anomaly detection resources, e.g., courses, books, papers and videos.

feature-selector - Feature selector is a tool for dimensionality reduction of machine learning datasets

  •    Jupyter

Feature selector is a tool for dimensionality reduction of machine learning datasets. The FeatureSelector also includes a number of visualization methods to inspect characteristics of a dataset.


Accord.NET - Machine learning, Computer vision, Statistics and general scientific computing for .NET

  •    CSharp

The Accord.NET project provides machine learning, statistics, artificial intelligence, computer vision and image processing methods to .NET. It can be used on Microsoft Windows, Xamarin, Unity3D, Windows Store applications, Linux or mobile.

Java Machine Learning Library

  •    Java

Java Machine Learning Library is a library of machine learning algorithms and related datasets. Machine learning techniques include: clustering, classification, feature selection, regression, data pre-processing, ensemble learning, voting, ...

Jubatus - Framework and Library for Distributed Online Machine Learning

  •    C++

Jubatus is a distributed processing framework and streaming machine learning library. Jubatus includes these functionalities: Online Machine Learning Library: Classification, Regression, Recommendation (Nearest Neighbor Search), Graph Mining, Anomaly Detection, Clustering, Feature Vector Converter (fv_converter): Data Preprocess and Feature Extraction, Framework for Distributed Online Machine Learning with Fault Tolerance.

elf-project

  •    C++

The name stands for ensemble learning framework. It is a collection of machine learning algorithms for classification and regression with the possibility of connecting them together via ensemble learning. It is written in C++.

TensorFlow-Book - Accompanying source code for Machine Learning with TensorFlow

  •    Jupyter

This is the official code repository for Machine Learning with TensorFlow. Get started with machine learning using TensorFlow, Google's latest and greatest machine learning library.

machine_learning_basics - Plain python implementations of basic machine learning algorithms

  •    Jupyter

This repository contains implementations of basic machine learning algorithms in plain Python (Python Version 3.6+). All algorithms are implemented from scratch without using additional machine learning libraries. The intention of these notebooks is to provide a basic understanding of the algorithms and their underlying structure, not to provide the most efficient implementations. After several requests I started preparing notebooks on how to preprocess datasets for machine learning. Within the next months I will add one notebook for each kind of dataset (text, images, ...). As before, the intention of these notebooks is to provide a basic understanding of the preprocessing steps, not to provide the most efficient implementations.

rumale - Rumale is a machine learning library in Ruby

  •    Ruby

Rumale (Ruby machine learning) is a machine learning library in Ruby. Rumale provides machine learning algorithms with interfaces similar to Scikit-Learn in Python. Rumale supports Linear / Kernel Support Vector Machine, Logistic Regression, Linear Regression, Ridge, Lasso, Kernel Ridge, Factorization Machine, Naive Bayes, Decision Tree, AdaBoost, Gradient Tree Boosting, Random Forest, Extra-Trees, K-nearest neighbor classifier, K-Means, K-Medoids, Gaussian Mixture Model, DBSCAN, SNN, Power Iteration Clustering, Mutidimensional Scaling, t-SNE, Principal Component Analysis, Kernel PCA and Non-negative Matrix Factorization. This project was formerly known as "SVMKit". If you are using SVMKit, please install Rumale and replace SVMKit constants with Rumale.

mlens - ML-Ensemble – high performance ensemble learning

  •    Python

ML-Ensemble combines a Scikit-learn high-level API with a low-level computational graph framework to build memory efficient, maximally parallelized ensemble networks in as few lines of codes as possible. ML-Ensemble is thread safe as long as base learners are and can fall back on memory mapped multiprocessing for memory-neutral process-based concurrency. For tutorials and full documentation, visit the project website.

umap - Uniform Manifold Approximation and Projection

  •    Python

From these assumptions it is possible to model the manifold with a fuzzy topological structure. The embedding is found by searching for a low dimensional projection of the data that has the closest possible equivalent fuzzy topological structure. The important thing is that you don't need to worry about that -- you can use UMAP right now for dimension reduction and visualisation as easily as a drop in replacement for scikit-learn's t-SNE.

tensorflow-image-detection - A generic image detection program that uses Google's Machine Learning library, Tensorflow and a pre-trained Deep Learning Convolutional Neural Network model called Inception

  •    Python

A generic image detection program that uses Google's Machine Learning library, Tensorflow and a pre-trained Deep Learning Convolutional Neural Network model called Inception. This model has been pre-trained for the ImageNet Large Visual Recognition Challenge using the data from 2012, and it can differentiate between 1,000 different classes, like Dalmatian, dishwasher etc. The program applies Transfer Learning to this existing model and re-trains it to classify a new set of images.

sod - An Embedded Computer Vision & Machine Learning Library (CPU Optimized & IoT Capable)

  •    C

SOD is an embedded, modern cross-platform computer vision and machine learning software library that expose a set of APIs for deep-learning, advanced media analysis & processing including real-time, multi-class object detection and model training on embedded systems with limited computational resource and IoT devices. SOD was built to provide a common infrastructure for computer vision applications and to accelerate the use of machine perception in open source as well commercial products.