- 515

This repository contains the (1) Learned Perceptual Image Patch Similarity (LPIPS) metric and (2) Berkeley-Adobe Perceptual Patch Similarity (BAPPS) dataset proposed in the paper below. It can also be used as an implementation of the "perceptual loss". The Unreasonable Effectiveness of Deep Features as a Perceptual Metric Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, Oliver Wang. In CVPR, 2018.

https://richzhang.github.io/PerceptualSimilarityhttps://github.com/richzhang/PerceptualSimilarity

Tags | deep-learning deep-neural-networks perceptual perceptual-metric perceptual-losses pytorch perceptual-similarity |

Implementation | Python |

License | Public |

Platform | Windows Linux |

A perceptual hash is a fingerprint of a multimedia file derived from various features from its content. Unlike cryptographic hash functions which rely on the avalanche effect of small changes in input leading to drastic changes in the output, perceptual hashes are "close" to one another if the features are similar. Perceptual hashes are a different concept compared to cryptographic hash functions like MD5 and SHA1. With cryptographic hashes, the hash values are random. The data used to generate the hash acts like a random seed, so the same data will generate the same result, but different data will create different results. Comparing two SHA1 hash values really only tells you two things. If the hashes are different, then the data is different. And if the hashes are the same, then the data is likely the same. In contrast, perceptual hashes can be compared -- giving you a sense of similarity between the two data sets.

perceptual-hashes image image-hash hashRepository for the book Introduction to Artificial Neural Networks and Deep Learning: A Practical Guide with Applications in Python. Deep learning is not just the talk of the town among tech folks. Deep learning allows us to tackle complex problems, training artificial neural networks to recognize complex patterns for image and speech recognition. In this book, we'll continue where we left off in Python Machine Learning and implement deep learning algorithms in PyTorch.

deep-learning neural-network machine-learning tensorflow artificial-intelligence data-science pytorchPyTorch is a flexible deep learning framework that allows automatic differentiation through dynamic neural networks (i.e., networks that utilise dynamic control flow like if statements and while loops). It supports GPU acceleration, distributed training, various optimisations, and plenty more neat features. These are some notes on how I think about using PyTorch, and don't encompass all parts of the library or every best practice, but may be helpful to others. Neural networks are a subclass of computation graphs. Computation graphs receive input data, and data is routed to and possibly transformed by nodes which perform processing on the data. In deep learning, the neurons (nodes) in neural networks typically transform data with parameters and differentiable functions, such that the parameters can be optimised to minimise a loss via gradient descent. More broadly, the functions can be stochastic, and the structure of the graph can be dynamic. So while neural networks may be a good fit for dataflow programming, PyTorch's API has instead centred around imperative programming, which is a more common way for thinking about programs. This makes it easier to read code and reason about complex programs, without necessarily sacrificing much performance; PyTorch is actually pretty fast, with plenty of optimisations that you can safely forget about as an end user (but you can dig in if you really want to).

deep-learningPerceptualDiff is an image comparison utility that compares two images using a perceptual metric. That is, it uses a computational model of the human visual system to determine if two images are visually different, so minor changes in pixels are ignored.

PyTorch is a deep learning framework that puts Python first. It is a python package that provides Tensor computation (like numpy) with strong GPU acceleration, Deep Neural Networks built on a tape-based autograd system. You can reuse your favorite python packages such as numpy, scipy and Cython to extend PyTorch when needed.

neural-network autograd gpu numpy deep-learning tensorA tensorflow implementation for Perceptual Losses for Real-Time Style Transfer and Super-Resolution. This code is based on Tensorflow-Slim and OlavHN/fast-neural-style.

The goal is to teach a siamese network to be able to distinguish pairs of images. This project uses pytorch. Any dataset can be used. Each class must be in its own folder. This is the same structure that PyTorch's own image folder dataset uses.

pytorch-tutorial deep-learning neural-network siamese-network pytorch face-recognitionA comprehensive list of Deep Learning / Artificial Intelligence and Machine Learning tutorials - rapidly expanding into areas of AI/Deep Learning / Machine Vision / NLP and industry specific areas such as Automotives, Retail, Pharma, Medicine, Healthcare by Tarry Singh until at-least 2020 until he finishes his Ph.D. (which might end up being inter-stellar cosmic networks! Who knows! 😀)

machine-learning deep-learning tensorflow pytorch keras matplotlib aws kaggle pandas scikit-learn torch artificial-intelligence neural-network convolutional-neural-networks tensorflow-tutorials python-data ipython-notebook capsule-networkPyTorch Geometric is a geometric deep learning extension library for PyTorch. It consists of various methods for deep learning on graphs and other irregular structures, also known as geometric deep learning, from a variety of published papers. In addition, it consists of an easy-to-use mini-batch loader, a large number of common benchmark datasets (based on simple interfaces to create your own), and helpful transforms, both for learning on arbitrary graphs as well as on 3D meshes or point clouds.

pytorch geometric-deep-learning graph mesh neural-networks spline-cnnThis repository contains material related to Udacity's Deep Reinforcement Learning Nanodegree program. The tutorials lead you through implementing various algorithms in reinforcement learning. All of the code is in PyTorch (v0.4) and Python 3.

deep-reinforcement-learning reinforcement-learning reinforcement-learning-algorithms neural-networks pytorch pytorch-rl ddpg dqn ppo dynamic-programming cross-entropy hill-climbing ml-agents openai-gym-solutions openai-gym rl-algorithmsThis repository provides tutorial code for deep learning researchers to learn PyTorch. In the tutorial, most of the models were implemented with less than 30 lines of code. Before starting this tutorial, it is recommended to finish Official Pytorch Tutorial.

deep-learning pytorch-tutorial neural-networks pytorch tutorial tensorboardWelcome to the open-source repository for the Intel® nGraph™ Library. Our code base provides a Compiler and runtime suite of tools (APIs) designed to give developers maximum flexibility for their software design, allowing them to create or customize a scalable solution using any framework while also avoiding device-level hardware lock-in that is so common with many AI vendors. A neural network model compiled with nGraph can run on any of our currently-supported backends, and it will be able to run on any backends we support in the future with minimal disruption to your model. With nGraph, you can co-evolve your software and hardware's capabilities to stay at the forefront of your industry. The nGraph Compiler is Intel's graph compiler for Artificial Neural Networks. Documentation in this repo describes how you can program any framework to run training and inference computations on a variety of Backends including Intel® Architecture Processors (CPUs), Intel® Nervana™ Neural Network Processors (NNPs), cuDNN-compatible graphics cards (GPUs), custom VPUs like Movidius, and many others. The default CPU Backend also provides an interactive Interpreter mode that can be used to zero in on a DL model and create custom nGraph optimizations that can be used to further accelerate training or inference, in whatever scenario you need.

ngraph tensorflow mxnet deep-learning compiler performance onnx paddlepaddle neural-network deep-neural-networks pytorch caffe2VMAF is a perceptual video quality assessment algorithm developed by Netflix. VMAF Development Kit (VDK) is a software package that contains the VMAF algorithm implementation, as well as a set of tools that allows a user to train and test a custom VMAF model. Read this tech blog post for an overview.Refer to the FAQ page.

Phashion is a Ruby wrapper around the pHash library, "perceptual hash", which detects duplicate and near-duplicate multimedia files (e.g. images, audio, video, though Phashion currently only supports images.). "Near-duplicates" are images that come from the same source and show essentially the same thing, but may have differences in such features as dimensions, bytesizes, lossy-compression artifacts, and color levels. See an overview of Phashion on Mike's blog.

phash image-analysis duplicate-multimedia-filesYou can look at test/index.js as an example for how to use Niffy. To run the example test just do make test after cloning this repo. Niffy is built on Nightmare and used in combination with Mocha. You'll also need to read and use both of those library's APIs to use niffy effectively.

nightmare nightmarejs perceptual-diffing ui-testing niffy electronTrending deep learning Github repositories can be found here. Hint: This will be updated regularly.

deep-learning deep-neural-networks deep-reinforcement-learning convolutional-neural-networks recurrent-neural-networks stargazers-count artificial-neural-networks artificial-intelligence machine-learning top-repositoriesDeep learning is a group of exciting new technologies for neural networks. Through a combination of advanced training techniques and neural network architectural components, it is now possible to create neural networks of much greater complexity. Deep learning allows a neural network to learn hierarchies of information in a way that is like the function of the human brain. This course will introduce the student to computer vision with Convolution Neural Networks (CNN), time series analysis with Long Short-Term Memory (LSTM), classic neural network structures and application to computer security. High Performance Computing (HPC) aspects will demonstrate how deep learning can be leveraged both on graphical processing units (GPUs), as well as grids. Focus is primarily upon the application of deep learning to problems, with some introduction mathematical foundations. Students will use the Python programming language to implement deep learning using Google TensorFlow and Keras. It is not necessary to know Python prior to this course; however, familiarity of at least one programming language is assumed. This course will be delivered in a hybrid format that includes both classroom and online instruction. This syllabus presents the expected class schedule, due dates, and reading assignments. Download current syllabus.

neural-network machine-learning tensorflow keras deeplearningIntel MKL-DNN repository migrated to https://github.com/intel/mkl-dnn. The old address will continue to be available and will redirect to the new repo. Please update your links. Intel(R) Math Kernel Library for Deep Neural Networks (Intel(R) MKL-DNN) is an open source performance library for deep learning applications. The library accelerates deep learning applications and framework on Intel(R) architecture. Intel(R) MKL-DNN contains vectorized and threaded building blocks which you can use to implement deep neural networks (DNN) with C and C++ interfaces.

intel mkl-dnn deep-learning deep-neural-networks cnn rnn lstm c-plus-plus intel-architecture xeon xeon-phi atom core simd sse42 avx2 avx512 avx512-vnni performanceSpotlight uses PyTorch to build both deep and shallow recommender models. By providing both a slew of building blocks for loss functions (various pointwise and pairwise ranking losses), representations (shallow factorization representations, deep sequence models), and utilities for fetching (or generating) recommendation datasets, it aims to be a tool for rapid exploration and prototyping of new recommender models. See the full documentation for details.

recommender-system deep-learning learning-to-rank machine-learning matrix-factorization pytorchWe believe that there exist classic deep learning papers which are worth reading regardless of their application domain. Rather than providing overwhelming amount of papers, We would like to provide a curated list of the awesome deep learning papers which are considered as must-reads in certain research domains. Before this list, there exist other awesome deep learning lists, for example, Deep Vision and Awesome Recurrent Neural Networks. Also, after this list comes out, another awesome list for deep learning beginners, called Deep Learning Papers Reading Roadmap, has been created and loved by many deep learning researchers.

deep-learning deep-neural-networks machine-learning
We have large collection of open source products. Follow the tags from
Tag Cloud >>

Open source products are scattered around the web. Please provide information
about the open source projects you own / you use.
**Add Projects.**