alphalens - Performance analysis of predictive (alpha) stock factors

  •        30

Alphalens is a Python Library for performance analysis of predictive (alpha) stock factors. Alphalens works great with the Zipline open source backtesting library, and Pyfolio which provides performance and risk analysis of financial portfolios.Check out the example notebooks for more on how to read and use the factor tear sheet.

http://quantopian.github.io/alphalens
https://github.com/quantopian/alphalens

Tags
Implementation
License
Platform

   




Related Projects

Zipline - A Pythonic Algorithmic Trading Library

  •    Python

Zipline is a Pythonic algorithmic trading library. It is an event-driven system that supports both backtesting and live-trading. Zipline is currently used in production as the backtesting and live-trading engine powering Quantopian -- a free, community-centered, hosted platform for building and executing trading strategies.Note: Installing Zipline via pip is slightly more involved than the average Python package. Simply running pip install zipline will likely fail if you've never installed any scientific Python packages before.

StockSharp - Algorithmic trading and quantitative trading open source platform to develop trading robots (stock markets, forex, bitcoins and options)

  •    CSharp

StockSharp (shortly S#) – are free set of programs for trading at any markets of the world (American, European, Asian, Russian, stocks, futures, options, Bitcoins, forex, etc.). You will be able to trade manually or automated trading (algorithmic trading robots, conventional or HFT).Available connections: FIX/FAST, LMAX, Rithmic, Fusion/Blackwood, Interactive Brokers, OpenECry, Sterling, IQFeed, ITCH, FXCM, QuantHouse, E*Trade, BTCE, BitStamp and many other. Any broker or partner broker (benefits).

Lean - Lean Algorithmic Trading Engine by QuantConnect (C#, Python, F#)

  •    CSharp

Lean Engine is an open-source fully managed C# algorithmic trading engine built for desktop and cloud usage. It was designed in Mono and operates in Windows, Linux and Mac platforms. Lean drives the web based algorithmic trading platform QuantConnect.Handle all messages from the algorithmic trading engine. Decide what should be sent, and where the messages should go. The result processing system can send messages to a local GUI, or the web interface.

100-pandas-puzzles - 100 data puzzles for pandas, ranging from short and simple to super tricky (60% complete)

  •    Jupyter

Inspired by 100 Numpy exerises, here are 100* short puzzles for testing your knowledge of pandas' power. Since pandas is a large library with many different specialist features and functions, these excercises focus mainly on the fundamentals of manipulating data (indexing, grouping, aggregating, cleaning), making use of the core DataFrame and Series objects. Many of the excerises here are straightforward in that the solutions require no more than a few lines of code (in pandas or NumPy - don't go using pure Python!). Choosing the right methods and following best practices is the underlying goal.


financial-analysis-python-tutorial - Financial Analysis in Python tutorial

  •    

You can view the video of the talk here. Thomas Wiecki is a Quantitative Researcher at Quantopian Inc -- a Boston based startup providing you with the first browser based algorithmic trading platform -- and a PhD student at Brown University where he studies Computational Cognitive Neuroscience. He specializes in Bayesian Inference, Machine Learning, Scientific Computing in Python, algorithmic trading and Computational Psychiatry.

quantmod - Quantitative Financial Modelling Framework

  •    R

quantmod is an R package that provides a framework for quantitative financial modeling and trading. It provides a rapid prototyping environment that makes modeling easier by removing the repetitive workflow issues surrounding data management and visualization. Ask your question on Stack Overflow or the R-SIG-Finance mailing list (you must subscribe to post).

catalyst - An Algorithmic Trading Library for Crypto-Assets in Python

  •    Python

Catalyst is an algorithmic trading library for crypto-assets written in Python. It allows trading strategies to be easily expressed and backtested against historical data (with daily and minute resolution), providing analytics and insights regarding a particular strategy's performance. Catalyst also supports live-trading of crypto-assets starting with four exchanges (Binance, Bitfinex, Bittrex, and Poloniex) with more being added over time. Catalyst empowers users to share and curate data and build profitable, data-driven investment strategies. Please visit catalystcrypto.io to learn more about Catalyst. Catalyst builds on top of the well-established Zipline project. We did our best to minimize structural changes to the general API to maximize compatibility with existing trading algorithms, developer knowledge, and tutorials. Join us on the Catalyst Forum for questions around Catalyst, algorithmic trading and technical support. We also have a Discord group with the #catalyst_dev and #catalyst_setup dedicated channels.

PythonDataScienceHandbook - Python Data Science Handbook: full text in Jupyter Notebooks

  •    Jupyter

This repository contains the entire Python Data Science Handbook, in the form of (free!) Jupyter notebooks. Run the code using the Jupyter notebooks available in this repository's notebooks directory.

Marketstore - DataFrame Server for Financial Timeseries Data

  •    Go

MarketStore is a database server optimized for financial timeseries data. You can think of it as an extensible DataFrame service that is accessible from anywhere in your system, at higher scalability. It is designed from the ground up to address scalability issues around handling large amounts of financial market data used in algorithmic trading backtesting, charting, and analyzing price history with data spanning many years, including tick-level for the all US equities or the exploding crypto currencies space. If you are struggling with managing lots of HDF5 files, this is perfect solution to your problem.

Pyfolio - Portfolio and risk analytics in Python

  •    Python

pyfolio is a Python library for performance and risk analysis of financial portfolios developed by Quantopian Inc. It works well with the Zipline open source backtesting library.Also see slides of a talk about pyfolio.

algo-coin - Algorithmic trading cryptocurrencies across multiple exchanges

  •    Javascript

Algorithmic Trading Bitcoin. Lightweight, extensible program for algorithmically trading cryptocurrencies and derivatives across multiple exchanges.

ScipySuperpack - Recent builds of Numpy, Scipy, Matplotlib, iPython and PyMC for OSX

  •    Shell

This shell script will build and install the Python scientific stack, including Numpy, Scipy, Matplotlib, Jupyter, Pandas, Statsmodels, Scikit-Learn, and PyMC for OS X 10.10 (Yosemite) using the Homebrew package manager. The script will use recent development code from each package, which means that though some bugs may be fixed and features added, they also may be more unstable than the official releases. The SuperPack will install Python 2.7 or 3.2 from Homebrew and build all packages against it.

python-cheat-sheet - Python Cheat Sheet NumPy, Matplotlib

  •    Jupyter

This rep is a growing list of Python cheat sheets, tailored for Data Science. If you want to install a package individually, go into the corresponding <package-name>.md file for instructions on how to install.

fecon235 - Computational tools for financial economics

  •    Jupyter

This is a free open source project for software tools in financial economics. We develop code for research notebooks which are executable scripts capable of statistical computations, as well as, collection of raw data in real-time. This serves to verify theoretical ideas and practical methods interactively. Economic and financial data, both historical and the most current.

pandas-videos - Jupyter notebook and datasets from the pandas Q&A video series

  •    Jupyter

Read about the series, and view all of the videos on one page: Easier data analysis in Python with pandas.

Deep-Trading - Algorithmic trading with deep learning experiments

  •    OpenEdge

Algorithmic trading with deep learning experiments. Now released part one - simple time series forecasting. I plan to implement more sophisticated algorithms and their ensembles with different features, check their performance, train a trading strategy and go live.

ccxt - A JavaScript / Python / PHP cryptocurrency trading library with support for more than 100 bitcoin/altcoin exchanges

  •    Javascript

A JavaScript / Python / PHP library for cryptocurrency trading and e-commerce with support for many bitcoin/ether/altcoin exchange markets and merchant APIs. The CCXT library is used to connect and trade with cryptocurrency / altcoin exchanges and payment processing services worldwide. It provides quick access to market data for storage, analysis, visualization, indicator development, algorithmic trading, strategy backtesting, bot programming, webshop integration and related software engineering.

blaze - NumPy and Pandas interface to Big Data

  •    Python

Blaze translates a subset of modified NumPy and Pandas-like syntax to databases and other computing systems. Blaze allows Python users a familiar interface to query data living in other data storage systems. We point blaze to a simple dataset in a foreign database (PostgreSQL). Instantly we see results as we would see them in a Pandas DataFrame.

pynamical - Pynamical is a Python package for modeling and visualizing discrete nonlinear dynamical systems, chaos, and fractals

  •    Python

pynamical uses pandas, numpy, and numba for fast simulation, and matplotlib for visualizations and animations to explore system behavior. Compatible with Python 2 and 3. Pynamical comes packaged with the logistic map, the Singer map, and the cubic map predefined. The models may be run with a range of parameter values over a set of time steps, and the resulting numerical output is returned as a pandas DataFrame. Pynamical can then visualize this output in various ways, including with bifurcation diagrams, two-dimensional phase diagrams, three-dimensional phase diagrams, and cobweb plots.