Mesa is a agent-based modeling framework in Python

  •        67

Mesa is an Apache2 licensed agent-based modeling (or ABM) framework in Python.It allows users to quickly create agent-based models using built-in core components (such as spatial grids and agent schedulers) or customized implementations; visualize them using a browser-based interface; and analyze their results using Python's data analysis tools. Its goal is to be the Python 3-based alternative to NetLogo, Repast, or MASON.

https://github.com/projectmesa/mesa

Tags
Implementation
License
Platform

   




Related Projects

Apache Gora - Provides persistence to column stores, key value stores, document stores and RDBMS

  •    Java

The Apache Gora open source framework provides an in-memory data model and persistence for big data. Gora supports persisting to column stores, key value stores, document stores and RDBMSs, and analyzing the data with extensive Apache Hadoop MapReduce support.

nfstream - NFStream: a Flexible Network Data Analysis Framework.

  •    Python

NFStream is a Python framework providing fast, flexible, and expressive data structures designed to make working with online or offline network data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world network data analysis in Python. Additionally, it has the broader goal of becoming a common network data analytics framework for researchers providing data reproducibility across experiments. Binary installers for the latest released version are available on Pypi.

Skater - Python Library for Model Interpretation/Explanations

  •    Python

Skater is a unified framework to enable Model Interpretation for all forms of model to help one build an Interpretable machine learning system often needed for real world use-cases(** we are actively working towards to enabling faithful interpretability for all forms models). It is an open source python library designed to demystify the learned structures of a black box model both globally(inference on the basis of a complete data set) and locally(inference about an individual prediction). The project was started as a research idea to find ways to enable better interpretability(preferably human interpretability) to predictive "black boxes" both for researchers and practioners. The project is still in beta phase.

NFStream - A Flexible Network Data Analysis Framework

  •    Python

NFStream is a Python package providing fast, flexible, and expressive data structures designed to make working with online or offline network data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world network data analysis in Python. Additionally, it has the broader goal of becoming a common network data processing framework for researchers providing data reproducibility across experiments. NFStream extracts +90 flow features and can convert it directly to a pandas Dataframe or a CSV file.

NuclearJS - Reactive Flux built with ImmutableJS data structures. Framework agnostic.

  •    Javascript

NuclearJS is a traditional Flux architecture built with ImmutableJS data structures. The goal of NuclearJS is to provide a way to model data that is easy to reason about and decouple at very large scale. The framework should be implemented functionally wherever appropriate. This reduces incidental complexity and pairs well with Immutability.


jSchema - A simple, easy to use data modeling framework for JavaScript

  •    Javascript

jSchema is a framework for modeling data in JavaScript. By using fundamental data modeling principles you are able to pull multiple datasets into a common schema, define relationships, aggregate, join, and subset datasets to make data easier to work with in the browser. If you use npm, npm install jschema.

Modular toolkit for Data Processing MDP

  •    Python

The Modular toolkit for Data Processing (MDP) is a Python data processing framework. From the user's perspective, MDP is a collection of supervised and unsupervised learning algorithms and other data processing units that can be combined into data processing sequences and more complex feed-forward network architectures. From the scientific developer's perspective, MDP is a modular framework, which can easily be expanded. The implementation of new algorithms is easy and intuitive. The new i

RUBRIX - Python framework to explore, label, and monitor data for NLP

  •    Python

Rubrix is a production-ready Python framework for exploring, annotating, and managing data in NLP projects. Most annotation tools treat data collection as a one-off activity at the beginning of each project. In real-world projects, data collection is a key activity of the iterative process of ML model development. Once a model goes into production, you want to monitor and analyze its predictions, and collect more data to improve your model over time. Rubrix is designed to close this gap, enabling you to iterate as much as you need.

tidybayes - Bayesian analysis + tidy data + geoms (R package)

  •    R

tidybayes is an R package that aims to make it easy to integrate popular Bayesian modeling methods into a tidy data + ggplot workflow. Composing data for use with the model. This often means translating data from a data.frame into a list , making sure factors are encoded as numerical data, adding variables to store the length of indices, etc. This package helps automate these operations using the compose_data function, which automatically handles data types like numeric, logical, factor, and ordinal, and allows easy extensions for converting other datatypes into a format the model understands by providing your own implementation of the generic as_data_list.

statistical-analysis-python-tutorial - Statistical Data Analysis in Python

  •    HTML

Chris Fonnesbeck is an Assistant Professor in the Department of Biostatistics at the Vanderbilt University School of Medicine. He specializes in computational statistics, Bayesian methods, meta-analysis, and applied decision analysis. He originally hails from Vancouver, BC and received his Ph.D. from the University of Georgia. This tutorial will introduce the use of Python for statistical data analysis, using data stored as Pandas DataFrame objects. Much of the work involved in analyzing data resides in importing, cleaning and transforming data in preparation for analysis. Therefore, the first half of the course is comprised of a 2-part overview of basic and intermediate Pandas usage that will show how to effectively manipulate datasets in memory. This includes tasks like indexing, alignment, join/merge methods, date/time types, and handling of missing data. Next, we will cover plotting and visualization using Pandas and Matplotlib, focusing on creating effective visual representations of your data, while avoiding common pitfalls. Finally, participants will be introduced to methods for statistical data modeling using some of the advanced functions in Numpy, Scipy and Pandas. This will include fitting your data to probability distributions, estimating relationships among variables using linear and non-linear models, and a brief introduction to bootstrapping methods. Each section of the tutorial will involve hands-on manipulation and analysis of sample datasets, to be provided to attendees in advance.

AIL-framework - AIL framework - Analysis Information Leak framework

  •    Python

AIL is a modular framework to analyse potential information leaks from unstructured data sources like pastes from Pastebin or similar services or unstructured data streams. AIL framework is flexible and can be extended to support other functionalities to mine or process sensitive information. The default installing_deps.sh is for Debian and Ubuntu based distributions. For Arch linux based distributions, you can replace it with installing_deps_archlinux.sh.

gaphor - Gaphor is the simple modeling tool

  •    Python

Gaphor is a UML and SysML modeling application written in Python. It is designed to be easy to use, while still being powerful. Gaphor implements a fully-compliant UML 2 data model, so it is much more than a picture drawing tool. You can use Gaphor to quickly visualize different aspects of a system as well as create complete, highly complex models. Gaphor is a UML and SysML modeling application written in Python. We designed it to be easy to use, while still being powerful. Gaphor implements a fully-compliant UML 2 data model, so it is much more than a picture drawing tool. You can use Gaphor to quickly visualize different aspects of a system as well as create complete, highly complex models.

Kats - Kats, a kit to analyze time series data, a lightweight, easy-to-use, generalizable, and extendable framework to perform time series analysis, from understanding the key statistics and characteristics, detecting change points and anomalies, to forecasting future trends

  •    Python

Kats is a toolkit to analyze time series data, a lightweight, easy-to-use, and generalizable framework to perform time series analysis. Time series analysis is an essential component of Data Science and Engineering work at industry, from understanding the key statistics and characteristics, detecting regressions and anomalies, to forecasting future trends. Kats aims to provide the one-stop shop for time series analysis, including detection, forecasting, feature extraction/embedding, multivariate analysis, etc. Kats is released by Facebook's Infrastructure Data Science team. It is available for download on PyPI.

Kapacitor - Open source framework for processing, monitoring, and alerting on time series data

  •    Go

Kapacitor is a open source framework for processing, monitoring, and alerting on time series data. Kapacitor imports (stream or batch) time series data, and then transform, analyze, and act on the data. It uses Telegraf to collect system metrics on your local machine and store them in InfluxDB.

frdomain - Code repo for Functional and Reactive Domain Modeling

  •    Scala

Code repo for Functional and Reactive Domain Modeling.Functional and Reactive Domain Modeling teaches you how to think of the domain model in terms of pure functions and how to compose them to build larger abstractions. You will start with the basics of functional programming and gradually progress to the advanced concepts and patterns that you need to know to implement complex domain models. The book demonstrates how advanced FP patterns like algebraic data types, typeclass based design, and isolation of side-effects can make your model compose for readability and verifiability. On the subject of reactive modeling, the book focuses on higher order concurrency patterns like actors and futures. It uses the Akka framework as the reference implementation and demonstrates how advanced architectural patterns like event sourcing and CQRS can be put to great use in implementing scalable models. You will learn techniques that are radically different from the standard RDBMS based applications that are based on mutation of records. You'll also pick up important patterns like using asynchronous messaging for interaction based on non blocking concurrency and model persistence, which delivers the speed of in-memory processing along with suitable guarantees of reliability.

streamalert - StreamAlert is a serverless, realtime data analysis framework which empowers you to ingest, analyze, and alert on data from any environment, using datasources and alerting logic you define

  •    Python

StreamAlert is a serverless, realtime data analysis framework which empowers you to ingest, analyze, and alert on data from any environment, using datasources and alerting logic you define.

plato-research-dialogue-system - This is the Plato Research Dialogue System, a flexible platform for developing conversational AI agents

  •    Python

The Plato Research Dialogue System is a flexible framework that can be used to create, train, and evaluate conversational AI agents in various environments. It supports interactions through speech, text, or dialogue acts and each conversational agent can interact with data, human users, or other conversational agents (in a multi-agent setting). Every component of every agent can be trained independently online or offline and Plato provides an easy way of wrapping around virtually any existing model, as long as Plato's interface is adhered to. Plato wrote several dialogues between characters who argue on a topic by asking questions. Many of these dialogues feature Socrates including Socrates' trial. (Socrates was acquitted in a new trial held in Athens, Greece on May 25th 2012).

Memgraph - Build modern, graph-based applications on top of your streaming data in minutes

  •    C++

Memgraph is a streaming graph application platform that helps you wrangle your streaming data, build sophisticated models that you can query in real-time, and develop graph applications.

automl-gs - Provide an input CSV and a target field to predict, generate a model + code to run it.

  •    Python

Give an input CSV file and a target field you want to predict to automl-gs, and get a trained high-performing machine learning or deep learning model plus native Python code pipelines allowing you to integrate that model into any prediction workflow. No black box: you can see exactly how the data is processed, how the model is constructed, and you can make tweaks as necessary. automl-gs is an AutoML tool which, unlike Microsoft's NNI, Uber's Ludwig, and TPOT, offers a zero code/model definition interface to getting an optimized model and data transformation pipeline in multiple popular ML/DL frameworks, with minimal Python dependencies (pandas + scikit-learn + your framework of choice). automl-gs is designed for citizen data scientists and engineers without a deep statistical background under the philosophy that you don't need to know any modern data preprocessing and machine learning engineering techniques to create a powerful prediction workflow.

snoopy-ng - Snoopy v2.0 - modular digital terrestrial tracking framework

  •    Python

INTRODUCTION AND OVERVIEW ============================= Snoopy is a distributed, sensor, data collection, interception, analysis, and visualization framework. It is written in a modular format, allowing for the collection of arbitrary data from various sources via Python plugins. In the above illustration, there are three drones running and syncing their data to two separate servers. One syncs over 3G, the other two over Xbee. The second server syncs its data to a third server. Finally, a client (laptop) pulls all data from the first and third servers, and runs Maltego to explore the data.






We have large collection of open source products. Follow the tags from Tag Cloud >>


Open source products are scattered around the web. Please provide information about the open source projects you own / you use. Add Projects.