cav-keras - Concept activation vectors for Keras

  •        16

In this package, we allow a user to explore concept activation vectors CAVs in their Keras models. We provide a simple example using CIFAR data.

https://github.com/pnxenopoulos/cav-keras

Tags
Implementation
License
Platform

   




Related Projects

AIX360 - Interpretability and explainability of data and machine learning models

  •    Python

The AI Explainability 360 toolkit is an open-source library that supports interpretability and explainability of datasets and machine learning models. The AI Explainability 360 Python package includes a comprehensive set of algorithms that cover different dimensions of explanations along with proxy explainability metrics. The AI Explainability 360 interactive experience provides a gentle introduction to the concepts and capabilities by walking through an example use case for different consumer personas. The tutorials and example notebooks offer a deeper, data scientist-oriented introduction. The complete API is also available.

mindsdb - Machine Learning in one line of code

  •    Python

MindsDB's is an Explainable AutoML framework for developers. MindsDB is an automated machine learning platform that allows anyone to gain powerful insights from their data. With MindsDB, users can get fast, accurate, and interpretable answers to any of their data questions within minutes.

xai - XAI - An eXplainability toolbox for machine learning

  •    Python

XAI is a Machine Learning library that is designed with AI explainability in its core. XAI contains various tools that enable for analysis and evaluation of data and models. The XAI library is maintained by The Institute for Ethical AI & ML, and it was developed based on the 8 principles for Responsible Machine Learning. You can find the documentation at https://ethicalml.github.io/xai/index.html. You can also check out our talk at Tensorflow London where the idea was first conceived - the talk also contains an insight on the definitions and principles in this library.

shapash - 🔅 Shapash makes Machine Learning models transparent and understandable by everyone

  •    Jupyter

Shapash is a Python library which aims to make machine learning interpretable and understandable by everyone. It provides several types of visualization that display explicit labels that everyone can understand. Data Scientists can understand their models easily and share their results. End users can understand the decision proposed by a model using a summary of the most influential criteria.


captum - Model interpretability and understanding for PyTorch

  •    Python

Captum is a model interpretability and understanding library for PyTorch. Captum means comprehension in Latin and contains general purpose implementations of integrated gradients, saliency maps, smoothgrad, vargrad and others for PyTorch models. It has quick integration for models built with domain-specific libraries such as torchvision, torchtext, and others. With the increase in model complexity and the resulting lack of transparency, model interpretability methods have become increasingly important. Model understanding is both an active area of research as well as an area of focus for practical applications across industries using machine learning. Captum provides state-of-the-art algorithms, including Integrated Gradients, to provide researchers and developers with an easy way to understand which features are contributing to a model’s output.

tensorwatch - Debugging, monitoring and visualization for Deep Learning and Reinforcement Learning

  •    Jupyter

TensorWatch is a debugging and visualization tool designed for deep learning and reinforcement learning. It fully leverages Jupyter Notebook to show real time visualizations and offers unique capabilities to query the live training process without having to sprinkle logging statements all over. You can also use TensorWatch to build your own UIs and dashboards. In addition, TensorWatch leverages several excellent libraries for visualizing model graph, review model statistics, explain prediction and so on. TensorWatch is under heavy development with a goal of providing a research platform for debugging machine learning in one easy to use, extensible and hackable package.

interpretable-ml-book - Book about interpretable machine learning

  •    TeX

Explaining the decisions and behaviour of machine learning models. This book is about interpretable machine learning. Machine learning is being built into many products and processes of our daily lives, yet decisions made by machines don't automatically come with an explanation. An explanation increases the trust in the decision and in the machine learning model. As the programmer of an algorithm you want to know whether you can trust the learned model. Did it learn generalizable features? Or are there some odd artifacts in the training data which the algorithm picked up? This book will give an overview over techniques that can be used to make black boxes as transparent as possible and explain decisions. In the first chapter algorithms that produce simple, interpretable models are introduced together with instructions how to interpret the output. The later chapters focus on analyzing complex models and their decisions. In an ideal future, machines will be able to explain their decisions and make a transition into an algorithmic age more human. This books is recommended for machine learning practitioners, data scientists, statisticians and also for stakeholders deciding on the use of machine learning and intelligent algorithms.

interpret - Fit interpretable models. Explain blackbox machine learning.

  •    C++

Historically, the most intelligible models were not very accurate, and the most accurate models were not intelligible. Microsoft Research has developed an algorithm called the Explainable Boosting Machine (EBM)* which has both high accuracy and intelligibility. EBM uses modern machine learning techniques like bagging and boosting to breathe new life into traditional GAMs (Generalized Additive Models). This makes them as accurate as random forests and gradient boosted trees, and also enhances their intelligibility and editability. In addition to EBM, InterpretML also supports methods like LIME, SHAP, linear models, partial dependence, decision trees and rule lists. The package makes it easy to compare and contrast models to find the best one for your needs.

Skater - Python Library for Model Interpretation/Explanations

  •    Python

Skater is a unified framework to enable Model Interpretation for all forms of model to help one build an Interpretable machine learning system often needed for real world use-cases(** we are actively working towards to enabling faithful interpretability for all forms models). It is an open source python library designed to demystify the learned structures of a black box model both globally(inference on the basis of a complete data set) and locally(inference about an individual prediction). The project was started as a research idea to find ways to enable better interpretability(preferably human interpretability) to predictive "black boxes" both for researchers and practioners. The project is still in beta phase.

ai-resources - Selection of resources to learn Artificial Intelligence / Machine Learning / Statistical Inference / Deep Learning / Reinforcement Learning

  •    

Update April 2017: It’s been almost a year since I posted this list of resources, and over the year there’s been an explosion of articles, videos, books, tutorials etc on the subject — even an explosion of ‘lists of resources’ such as this one. It’s impossible for me to keep this up to date. However, the one resource I would like to add is https://ml4a.github.io/ (https://github.com/ml4a) led by Gene Kogan. It’s specifically aimed at artists and the creative coding community. This is a very incomplete and subjective selection of resources to learn about the algorithms and maths of Artificial Intelligence (AI) / Machine Learning (ML) / Statistical Inference (SI) / Deep Learning (DL) / Reinforcement Learning (RL). It is aimed at beginners (those without Computer Science background and not knowing anything about these subjects) and hopes to take them to quite advanced levels (able to read and understand DL papers). It is not an exhaustive list and only contains some of the learning materials that I have personally completed so that I can include brief personal comments on them. It is also by no means the best path to follow (nowadays most MOOCs have full paths all the way from basic statistics and linear algebra to ML/DL). But this is the path I took and in a sense it's a partial documentation of my personal journey into DL (actually I bounced around all of these back and forth like crazy). As someone who has no formal background in Computer Science (but has been programming for many years), the language, notation and concepts of ML/SI/DL and even CS was completely alien to me, and the learning curve was not only steep, but vertical, treacherous and slippery like ice.

aerosolve - A machine learning package built for humans.

  •    Scala

Machine learning for humans.This library is meant to be used with sparse, interpretable features such as those that commonly occur in search (search keywords, filters) or pricing (number of rooms, location, price). It is not as interpretable with problems with very dense non-human interpretable features such as raw pixels or audio samples.

polyaxon - An open source platform for reproducible machine learning and deep learning on kubernetes

  •    Python

Welcome to Polyaxon, a platform for building, training, and monitoring large scale deep learning applications. Polyaxon deploys into any data center, cloud provider, or can be hosted and managed by Polyaxon, and it supports all the major deep learning frameworks such as Tensorflow, MXNet, Caffe, Torch, etc.

mlfinlab - MlFinLab helps portfolio managers and traders who want to leverage the power of machine learning by providing reproducible, interpretable, and easy to use tools

  •    Python

MlFinlab is a python package which helps portfolio managers and traders who want to leverage the power of machine learning by providing reproducible, interpretable, and easy to use tools. This repo is public facing and exists for the sole purpose of providing users with an easy way to raise bugs, feature requests, and other issues.

ml-agents - Unity Machine Learning Agents

  •    CSharp

Unity Machine Learning Agents (ML-Agents) is an open-source Unity plugin that enables games and simulations to serve as environments for training intelligent agents. Agents can be trained using reinforcement learning, imitation learning, neuroevolution, or other machine learning methods through a simple-to-use Python API. We also provide implementations (based on TensorFlow) of state-of-the-art algorithms to enable game developers and hobbyists to easily train intelligent agents for 2D, 3D and VR/AR games. These trained agents can be used for multiple purposes, including controlling NPC behavior (in a variety of settings such as multi-agent and adversarial), automated testing of game builds and evaluating different game design decisions pre-release. ML-Agents is mutually beneficial for both game developers and AI researchers as it provides a central platform where advances in AI can be evaluated on Unity’s rich environments and then made accessible to the wider research and game developer communities. For more information, in addition to installation and usage instructions, see our documentation home. If you have used a version of ML-Agents prior to v0.3, we strongly recommend our guide on migrating to v0.3.

kglib - Grakn Knowledge Graph Library (ML R&D)

  •    Python

To respond to these scenarios, KGLIB is the centre of all research projects conducted at Grakn Labs. In particular, its focus is on the integration of machine learning with the Grakn Knowledge Graph. More on this below, in Knowledge Graph Tasks. At present this repo contains one project: Knowledge Graph Convolutional Networks (KGCNs). Go there for more info on getting started with a working example.

machine-learning-with-js - Machine Learning with JavaScript. Fast and Simple. :rocket:

  •    Javascript

You don't need Python to train your own models and perform Machine Learning. This repository is linked to a series I have been writing about on Medium.com, regarding ML in JS.






We have large collection of open source products. Follow the tags from Tag Cloud >>


Open source products are scattered around the web. Please provide information about the open source projects you own / you use. Add Projects.