- 53

Each model is built into a separate Docker image with the appropriate Python, C++, and Java/Scala Runtime Libraries for training or prediction. Use the same Docker Image from Local Laptop to Production to avoid dependency surprises.

https://pipeline.aihttps://github.com/PipelineAI/pipeline

Tags | machine-learning artificial-intelligence tensorflow kubernetes elasticsearch cassandra ipython spark kafka netflixoss presto airflow pipeline jupyter-notebook zeppelin docker redis neural-network gpu microservices |

Implementation | HTML |

License | Apache |

Platform |

A comprehensive list of Deep Learning / Artificial Intelligence and Machine Learning tutorials - rapidly expanding into areas of AI/Deep Learning / Machine Vision / NLP and industry specific areas such as Automotives, Retail, Pharma, Medicine, Healthcare by Tarry Singh until at-least 2020 until he finishes his Ph.D. (which might end up being inter-stellar cosmic networks! Who knows! 😀)

machine-learning deep-learning tensorflow pytorch keras matplotlib aws kaggle pandas scikit-learn torch artificial-intelligence neural-network convolutional-neural-networks tensorflow-tutorials python-data ipython-notebook capsule-networkRepository for the book Introduction to Artificial Neural Networks and Deep Learning: A Practical Guide with Applications in Python. Deep learning is not just the talk of the town among tech folks. Deep learning allows us to tackle complex problems, training artificial neural networks to recognize complex patterns for image and speech recognition. In this book, we'll continue where we left off in Python Machine Learning and implement deep learning algorithms in PyTorch.

deep-learning neural-network machine-learning tensorflow artificial-intelligence data-science pytorchSpecialised plugins for Hadoop, Big Data & NoSQL technologies, written by a former Clouderan (Cloudera was the first Hadoop Big Data vendor) and modern Hortonworks partner/consultant. Supports a a wide variety of compatible Enterprise Monitoring systems.

nagios-plugins zookeeper hadoop hbase cloudera hbase-client jenkins travis-ci nagios-plugin hortonworks ambari cassandra elasticsearch docker kafka solr redis rabbitmq consul datastaxCompared to a classical approach, using a Recurrent Neural Networks (RNN) with Long Short-Term Memory cells (LSTMs) require no or almost no feature engineering. Data can be fed directly into the neural network who acts like a black box, modeling the problem correctly. Other research on the activity recognition dataset can use a big amount of feature engineering, which is rather a signal processing approach combined with classical data science techniques. The approach here is rather very simple in terms of how much was the data preprocessed. Let's use Google's neat Deep Learning library, TensorFlow, demonstrating the usage of an LSTM, a type of Artificial Neural Network that can process sequential data / time series.

machine-learning deep-learning lstm human-activity-recognition neural-network rnn recurrent-neural-networks tensorflow activity-recognitionThis project is not actively maintained anymore please see Seldon Core. Seldon Server is a machine learning platform that helps your data science team deploy models into production.

machine-learning deep-learning deployment kubernetes docker microservices spark kafka kafka-streams tensorflow cloud aws gcp azure seldon recommender-system recommendation-engine prediction"Data is the new oil" is a saying which you must have heard by now along with the huge interest building up around Big Data and Machine Learning in the recent past along with Artificial Intelligence and Deep Learning. Besides this, data scientists have been termed as having "The sexiest job in the 21st Century" which makes it all the more worthwhile to build up some valuable expertise in these areas. Getting started with machine learning in the real world can be overwhelming with the vast amount of resources out there on the web. "Practical Machine Learning with Python" follows a structured and comprehensive three-tiered approach packed with concepts, methodologies, hands-on examples, and code. This book is packed with over 500 pages of useful information which helps its readers master the essential skills needed to recognize and solve complex problems with Machine Learning and Deep Learning by following a data-driven mindset. By using real-world case studies that leverage the popular Python Machine Learning ecosystem, this book is your perfect companion for learning the art and science of Machine Learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute Machine Learning systems and projects successfully.

machine-learning deep-learning text-analytics classification clustering natural-language-processing computer-vision data-science spacy nltk scikit-learn prophet time-series-analysis convolutional-neural-networks tensorflow keras statsmodels pandas deep-neural-networksLike my work? I am Principal Consultant at Data Syndrome, a consultancy offering assistance and training with building full-stack analytics products, applications and systems. Find us on the web at datasyndrome.com. There is now a video course using code from chapter 8, Realtime Predictive Analytics with Kafka, PySpark, Spark MLlib and Spark Streaming. Check it out now at datasyndrome.com/video.

data-syndrome data data-science analytics apache-spark apache-kafka kafka spark predictive-analytics machine-learning machine-learning-algorithms airflow python-3 python3 amazon-ec2 agile-data agile-data-science vagrant amazon-web-servicesThis is a collection of IPython notebook/Jupyter notebooks intended to train the reader on different Apache Spark concepts, from basic to advanced, by using the Python language. If Python is not your language, and it is R, you may want to have a look at our R on Apache Spark (SparkR) notebooks instead. Additionally, if your are interested in being introduced to some basic Data Science Engineering, you might find these series of tutorials interesting. There we explain different concepts and applications using Python and R.

spark pyspark data-analysis mllib ipython-notebook notebook ipython data-science machine-learning big-data bigdataThis repository contains lecture transcripts and homework assignments as Jupyter Notebooks for the first of three Kadenze Academy courses on Creative Applications of Deep Learning w/ Tensorflow. It also contains a python package containing all the code developed during all three courses. The first course makes heavy usage of Jupyter Notebook. This will be necessary for submitting the homeworks and interacting with the guided session notebooks I will provide for each assignment. Follow along this guide and we'll see how to obtain all of the necessary libraries that we'll be using. By the end of this, you'll have installed Jupyter Notebook, NumPy, SciPy, and Matplotlib. While many of these libraries aren't necessary for performing the Deep Learning which we'll get to in later lectures, they are incredibly useful for manipulating data on your computer, preparing data for learning, and exploring results.

jupyter-notebook neural-network tensorflow deep-learning mooc dockerfile machine-learning tutorial workshopDeep learning is a group of exciting new technologies for neural networks. Through a combination of advanced training techniques and neural network architectural components, it is now possible to create neural networks of much greater complexity. Deep learning allows a neural network to learn hierarchies of information in a way that is like the function of the human brain. This course will introduce the student to computer vision with Convolution Neural Networks (CNN), time series analysis with Long Short-Term Memory (LSTM), classic neural network structures and application to computer security. High Performance Computing (HPC) aspects will demonstrate how deep learning can be leveraged both on graphical processing units (GPUs), as well as grids. Focus is primarily upon the application of deep learning to problems, with some introduction mathematical foundations. Students will use the Python programming language to implement deep learning using Google TensorFlow and Keras. It is not necessary to know Python prior to this course; however, familiarity of at least one programming language is assumed. This course will be delivered in a hybrid format that includes both classroom and online instruction. This syllabus presents the expected class schedule, due dates, and reading assignments. Download current syllabus.

neural-network machine-learning tensorflow keras deeplearningFirst, you will need to install git, if you don't have it already. If you want to go through chapter 16 on Reinforcement Learning, you will need to install OpenAI gym and its dependencies for Atari simulations.

tensorflow scikit-learn machine-learning deep-learning neural-network ml distributed jupyter-notebookGorgonia is a library that helps facilitate machine learning in Go. Write and evaluate mathematical equations involving multidimensional arrays easily. If this sounds like Theano or TensorFlow, it's because the idea is quite similar. Specifically, the library is pretty low-level, like Theano, but has higher goals like Tensorflow. The main reason to use Gorgonia is developer comfort. If you're using a Go stack extensively, now you have access to the ability to create production-ready machine learning systems in an environment that you are already familiar and comfortable with.

machine-learning artificial-intelligence neural-network computation-graph differentiation gradient-descent gorgonia deep-learning deeplearning deep-neural-networks automatic-differentiation symbolic-differentiationTensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides a large collection of customizable neural layers / functions that are key to build real-world AI applications. TensorLayer is awarded the 2017 Best Open Source Software by the ACM Multimedia Society. Simplicity : TensorLayer lifts the low-level dataflow interface of TensorFlow to high-level layers / models. It is very easy to learn through the rich example codes contributed by a wide community.

tensorlayer deep-learning tensorflow machine-learning data-science neural-network reinforcement-learning artificial-intelligence gan a3c tensorflow-tutorials dqn object-detection chatbot tensorflow-tutorial imagenet googleLenses offers SQL (for data browsing and Kafka Streams), Kafka Connect connector management, cluster monitoring and more. A collection of components to build a real time ingestion pipeline.

kafka kafka-connect connector streaming cassandra hazelcast redis elasticsearch ftp influxdb coap mqtt kudu jms hbase mongodb rethinkdb documentdb cosmosdb kubernetesDeepVariant is an analysis pipeline that uses a deep neural network to call genetic variants from next-generation DNA sequencing data.DeepVariant is a suite of Python/C++ programs that run on any Unix-like operating system. For convenience the documentation refers to building and running DeepVariant on Google Cloud Platform, but the tools themselves can be built and run on any standard Linux computer, including on-premise machines. Note that DeepVariant currently requires Python 2.7 and does not yet work with Python 3.

tensorflow deep-neural-network genomics science dna sequencing genome bioinformatics deep-learning ngs deepvariant machine-learningPractice and tutorial-style notebooks covering wide variety of machine learning techniques

numpy statistics pandas matplotlib regression scikit-learn classification principal-component-analysis clustering decision-trees random-forest dimensionality-reduction neural-network deep-learning artificial-intelligence data-science machine-learning k-nearest-neighbours naive-bayesIf the sign of the value given by the saliency mask is not important, then use VisualizeImageGrayscale, otherwise use VisualizeImageDiverging. See the SmoothGrad paper for more details on which visualization method to use. This example iPython notebook shows these techniques is a good starting place.

machine-learning deep-learning deep-neural-networks tensorflow convolutional-neural-networks saliency-map object-detection image-recognitionThese docker images are tested by hundreds of tools and also used in the full functional test suites of various other GitHub repos. These images are all available pre-built on My DockerHub - https://hub.docker.com/u/harisekhon/.

hadoop hbase cassandra solr solrcloud kafka consul superset zookeeper apache-drill nifi docker-image dockerhub docker rabbitmq-cluster nagios-plugins spark presto rabbitmqSome examples require MNIST dataset for training and testing. Don't worry, this dataset will automatically be downloaded when running examples (with input_data.py). MNIST is a database of handwritten digits, for a quick description of that dataset, you can check this notebook.

recurrent-neural-networks convolutional-neural-networks deep-learning-tutorial tensorflow tensorlayer keras deep-reinforcement-learning tensorflow-tutorials deep-learning machine-learning notebook autoencoder multi-layer-perceptron reinforcement-learning tflearn neural-networks neural-network neural-machine-translation nlp cnnEdward is a Python library for probabilistic modeling, inference, and criticism. It is a testbed for fast experimentation and research with probabilistic models, ranging from classical hierarchical models on small data sets to complex deep probabilistic models on large data sets. Edward fuses three fields: Bayesian statistics and machine learning, deep learning, and probabilistic programming. Edward is built on top of TensorFlow. It enables features such as computational graphs, distributed training, CPU/GPU integration, automatic differentiation, and visualization with TensorBoard.

bayesian-methods deep-learning machine-learning data-science tensorflow neural-networks statistics probabilistic-programming
We have large collection of open source products. Follow the tags from
Tag Cloud >>

Open source products are scattered around the web. Please provide information
about the open source projects you own / you use.
**Add Projects.**