Sequence-to-Sequence-Learning-of-Financial-Time-Series-in-Algorithmic-Trading - My bachelor's thesis—analyzing the application of LSTM-based RNNs on financial markets

  •        152

This is my bachelor's thesis that I wrote over the course of two months during my final year of studies, earning my Bachelor of Science in Computer Science degree. The thesis was co-authored by my good friend Tobias Ă…nhed. Click here for revised edition on DiVA.



Related Projects

stock-analysis-engine - Backtest 1000s of minute-by-minute trading algorithms for training AI with automated pricing data from: IEX, Tradier and FinViz

  •    Jupyter

Build and tune investment algorithms for use with artificial intelligence (deep neural networks) with a distributed stack for running backtests using live pricing data on publicly traded companies with automated datafeeds from: IEX Cloud, Tradier and FinViz (includes: pricing, options, news, dividends, daily, intraday, screeners, statistics, financials, earnings, and more). This will pull Redis and Minio docker images.

tensorflow-lstm-regression - Sequence prediction using recurrent neural networks(LSTM) with TensorFlow

  •    Jupyter

The objective is to predict continuous values, sin and cos functions in this example, based on previous observations using the LSTM architecture. This example has been updated with a new version compatible with the tensrflow-1.1.0. This new version is using a library polyaxon that provides an API to create deep learning models and experiments based on tensorflow.

PyAlgoTrade - Python Algorithmic Trading Library

  •    Python

PyAlgoTrade is a Python Algorithmic Trading Library with focus on backtesting and support for paper-trading and live-trading. Let’s say you have an idea for a trading strategy and you’d like to evaluate it with historical data and see how it behaves. PyAlgoTrade allows you to do so with minimal effort.

RNNSharp - RNNSharp is a toolkit of deep recurrent neural network which is widely used for many different kinds of tasks, such as sequence labeling, sequence-to-sequence and so on

  •    CSharp

RNNSharp is a toolkit of deep recurrent neural network which is widely used for many different kinds of tasks, such as sequence labeling, sequence-to-sequence and so on. It's written by C# language and based on .NET framework 4.6 or above version. This page introduces what is RNNSharp, how it works and how to use it. To get the demo package, you can access release page.

Stock-Prediction-Models - Gathers machine learning and deep learning models for Stock forecasting including trading bots and simulations

  •    Jupyter

Stock-Prediction-Models, Gathers machine learning and deep learning models for Stock forecasting, included trading bots and simulations. I code LSTM Recurrent Neural Network and Simple signal rolling agent inside Tensorflow JS, you can try it here,, you can download any historical CSV and upload dynamically.

t81_558_deep_learning - Washington University (in St

  •    Jupyter

Deep learning is a group of exciting new technologies for neural networks. Through a combination of advanced training techniques and neural network architectural components, it is now possible to create neural networks of much greater complexity. Deep learning allows a neural network to learn hierarchies of information in a way that is like the function of the human brain. This course will introduce the student to computer vision with Convolution Neural Networks (CNN), time series analysis with Long Short-Term Memory (LSTM), classic neural network structures and application to computer security. High Performance Computing (HPC) aspects will demonstrate how deep learning can be leveraged both on graphical processing units (GPUs), as well as grids. Focus is primarily upon the application of deep learning to problems, with some introduction mathematical foundations. Students will use the Python programming language to implement deep learning using Google TensorFlow and Keras. It is not necessary to know Python prior to this course; however, familiarity of at least one programming language is assumed. This course will be delivered in a hybrid format that includes both classroom and online instruction. This syllabus presents the expected class schedule, due dates, and reading assignments. Download current syllabus.

NowTrade - Algorithmic trading library with a focus on creating powerful strategies

  •    Python

NowTrade is an algorithmic trading library with a focus on creating powerful strategies using easily-readable and simple Python code. With the help of NowTrade, full blown stock/currency trading strategies, harnessing the power of machine learning, can be implemented with few lines of code. NowTrade strategies are not event driven like most other algorithmic trading libraries available. The strategies are implemented in a sequential manner (one line at a time) without worrying about events, callbacks, or object overloading.

Ta4j - Technical Analysis for Java

  •    Java

Ta4j is an open source Java library for technical analysis. It provides the basic components for creation, evaluation and execution of trading strategies. It is a powerful engine for building custom trading strategies. It supports more than 130 technical indicators (Aroon, ATR, moving averages, parabolic SAR, RSI, etc.).

LSTM-Human-Activity-Recognition - Human Activity Recognition example using TensorFlow on smartphone sensors dataset and an LSTM RNN (Deep Learning algo)

  •    Jupyter

Compared to a classical approach, using a Recurrent Neural Networks (RNN) with Long Short-Term Memory cells (LSTMs) require no or almost no feature engineering. Data can be fed directly into the neural network who acts like a black box, modeling the problem correctly. Other research on the activity recognition dataset can use a big amount of feature engineering, which is rather a signal processing approach combined with classical data science techniques. The approach here is rather very simple in terms of how much was the data preprocessed. Let's use Google's neat Deep Learning library, TensorFlow, demonstrating the usage of an LSTM, a type of Artificial Neural Network that can process sequential data / time series.

sockeye - Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet

  •    Python

Felix Hieber, Tobias Domhan, Michael Denkowski, David Vilar, Artem Sokolov, Ann Clifton and Matt Post (2017): Sockeye: A Toolkit for Neural Machine Translation. In eprint arXiv:cs-CL/1712.05690.If you are interested in collaborating or have any questions, please submit a pull request or issue. You can also send questions to sockeye-dev-at-amazon-dot-com.

NCRFpp - NCRF++, an Open-source Neural Sequence Labeling Toolkit

  •    Python

Sequence labeling models are quite popular in many NLP tasks, such as Named Entity Recognition (NER), part-of-speech (POS) tagging and word segmentation. State-of-the-art sequence labeling models mostly utilize the CRF structure with input word features. LSTM (or bidirectional LSTM) is a popular deep learning based feature extractor in sequence labeling task. And CNN can also be used due to faster computation. Besides, features within word are also useful to represent word, which can be captured by character LSTM or character CNN structure or human-defined neural features. NCRF++ is a PyTorch based framework with flexiable choices of input features and output structures. The design of neural sequence labeling models with NCRF++ is fully configurable through a configuration file, which does not require any code work. NCRF++ is a neural version of CRF++, which is a famous statistical CRF framework.

Multilabel-timeseries-classification-with-LSTM - Tensorflow implementation of paper: Learning to Diagnose with LSTM Recurrent Neural Networks

  •    Jupyter

Tensorflow implementation of model discussed in the following paper: Learning to Diagnose with LSTM Recurrent Neural Networks. MIMIC-III dataset can possibly be use to train and test the model. Beware this is not the data set used by the authors of the paper.

practical-machine-learning-with-python - Master the essential skills needed to recognize and solve complex real-world problems with Machine Learning and Deep Learning by leveraging the highly popular Python Machine Learning Eco-system

  •    Jupyter

"Data is the new oil" is a saying which you must have heard by now along with the huge interest building up around Big Data and Machine Learning in the recent past along with Artificial Intelligence and Deep Learning. Besides this, data scientists have been termed as having "The sexiest job in the 21st Century" which makes it all the more worthwhile to build up some valuable expertise in these areas. Getting started with machine learning in the real world can be overwhelming with the vast amount of resources out there on the web. "Practical Machine Learning with Python" follows a structured and comprehensive three-tiered approach packed with concepts, methodologies, hands-on examples, and code. This book is packed with over 500 pages of useful information which helps its readers master the essential skills needed to recognize and solve complex problems with Machine Learning and Deep Learning by following a data-driven mindset. By using real-world case studies that leverage the popular Python Machine Learning ecosystem, this book is your perfect companion for learning the art and science of Machine Learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute Machine Learning systems and projects successfully.

Accord.NET - Machine learning, Computer vision, Statistics and general scientific computing for .NET

  •    CSharp

The Accord.NET project provides machine learning, statistics, artificial intelligence, computer vision and image processing methods to .NET. It can be used on Microsoft Windows, Xamarin, Unity3D, Windows Store applications, Linux or mobile.

igel - a delightful machine learning tool that allows you to train, test, and use models without writing code

  •    Python

The goal of the project is to provide machine learning for everyone, both technical and non-technical users. I needed a tool sometimes, which I can use to fast create a machine learning prototype. Whether to build some proof of concept or create a fast draft model to prove a point. I find myself often stuck at writing boilerplate code and/or thinking too much of how to start this.

RLSeq2Seq - Deep Reinforcement Learning For Sequence to Sequence Models

  •    Python

NOTE: THE CODE IS UNDER DEVELOPMENT, PLEASE ALWAYS PULL THE LATEST VERSION FROM HERE. In recent years, sequence-to-sequence (seq2seq) models are used in a variety of tasks from machine translation, headline generation, text summarization, speech to text, to image caption generation. The underlying framework of all these models are usually a deep neural network which contains an encoder and decoder. The encoder processes the input data and a decoder receives the output of the encoder and generates the final output. Although simply using an encoder/decoder model would, most of the time, produce better result than traditional methods on the above-mentioned tasks, researchers proposed additional improvements over these sequence to sequence models, like using an attention-based model over the input, pointer-generation models, and self-attention models. However, all these seq2seq models suffer from two common problems: 1) exposure bias and 2) inconsistency between train/test measurement. Recently a completely fresh point of view emerged in solving these two problems in seq2seq models by using methods in Reinforcement Learning (RL). In these new researches, we try to look at the seq2seq problems from the RL point of view and we try to come up with a formulation that could combine the power of RL methods in decision-making and sequence to sequence models in remembering long memories. In this paper, we will summarize some of the most recent frameworks that combines concepts from RL world to the deep neural network area and explain how these two areas could benefit from each other in solving complex seq2seq tasks. In the end, we will provide insights on some of the problems of the current existing models and how we can improve them with better RL models. We also provide the source code for implementing most of the models that will be discussed in this paper on the complex task of abstractive text summarization.

Lean - Lean Algorithmic Trading Engine by QuantConnect (C#, Python, F#)

  •    CSharp

Lean Engine is an open-source fully managed C# algorithmic trading engine built for desktop and cloud usage. It was designed in Mono and operates in Windows, Linux and Mac platforms. Lean drives the web based algorithmic trading platform QuantConnect.Handle all messages from the algorithmic trading engine. Decide what should be sent, and where the messages should go. The result processing system can send messages to a local GUI, or the web interface.

rwa - Machine Learning on Sequential Data Using a Recurrent Weighted Average

  •    Python

This repository holds the code to a new kind of RNN model for processing sequential data. The model computes a recurrent weighted average (RWA) over every previous processing step. With this approach, the model can form direct connections anywhere along a sequence. This stands in contrast to traditional RNN architectures that only use the previous processing step. A detailed description of the RWA model has been published in a manuscript at Because the RWA can be computed as a running average, it does not need to be completely recomputed with each processing step. The numerator and denominator can be saved from the previous step. Consequently, the model scales like that of other RNN models such as the LSTM model.

sod - An Embedded Computer Vision & Machine Learning Library (CPU Optimized & IoT Capable)

  •    C

SOD is an embedded, modern cross-platform computer vision and machine learning software library that expose a set of APIs for deep-learning, advanced media analysis & processing including real-time, multi-class object detection and model training on embedded systems with limited computational resource and IoT devices. SOD was built to provide a common infrastructure for computer vision applications and to accelerate the use of machine perception in open source as well commercial products.

We have large collection of open source products. Follow the tags from Tag Cloud >>

Open source products are scattered around the web. Please provide information about the open source projects you own / you use. Add Projects.