PyTorch-NLP - Supporting Rapid Prototyping with a Toolkit (incl. Datasets and Neural Network Layers)

  •        64

PyTorch-NLP, or torchnlp for short, is a library of neural network layers, text processing modules and datasets designed to accelerate Natural Language Processing (NLP) research. Join our community, add datasets and neural network layers! Chat with us on Gitter and join the Google Group, we're eager to collaborate with you.

https://pytorchnlp.readthedocs.io
https://github.com/PetrochukM/PyTorch-NLP

Tags
Implementation
License
Platform

   




Related Projects

spaCy - 💫 Industrial-strength Natural Language Processing (NLP) with Python and Cython

  •    Python

spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest research, and was designed from day one to be used in real products. spaCy comes with pre-trained statistical models and word vectors, and currently supports tokenization for 20+ languages. It features the fastest syntactic parser in the world, convolutional neural network models for tagging, parsing and named entity recognition and easy deep learning integration. It's commercial open-source software, released under the MIT license. 💫 Version 2.0 out now! Check out the new features here.

stanfordnlp - Official Stanford NLP Python Library for Many Human Languages

  •    Python

The Stanford NLP Group's official Python NLP library. It contains packages for running our latest fully neural pipeline from the CoNLL 2018 Shared Task and for accessing the Java Stanford CoreNLP server. For detailed information please visit our official website. The PyTorch implementation of the neural pipeline in this repository is due to Peng Qi and Yuhao Zhang, with help from Tim Dozat and Jason Bolton.

NeuronBlocks - NLP DNN Toolkit - Building Your NLP DNN Models Like Playing Lego

  •    Python

NeuronBlocks is a NLP deep learning modeling toolkit that helps engineers/researchers to build end-to-end pipelines for neural network model training for NLP tasks. The main goal of this toolkit is to minimize developing cost for NLP deep neural network model building, including both training and inference stages. NeuronBlocks consists of two major components: Block Zoo and Model Zoo.

allennlp - An open-source NLP research library, built on PyTorch.

  •    Python

An Apache 2.0 NLP research library, built on PyTorch, for developing state-of-the-art deep learning models on a wide variety of linguistic tasks. If you need pointers on setting up an appropriate Python environment or would like to install AllenNLP using a different method, see below.


magnitude - A fast, efficient universal vector embedding utility package.

  •    Python

A feature-packed Python package and vector storage file format for utilizing vector embeddings in machine learning models in a fast, efficient, and simple manner developed by Plasticity. It is primarily intended to be a simpler / faster alternative to Gensim, but can be used as a generic key-vector store for domains outside NLP. Vector space embedding models have become increasingly common in machine learning and traditionally have been popular for natural language processing applications. A fast, lightweight tool to consume these large vector space embedding models efficiently is lacking.

gensim - Topic Modelling for Humans

  •    Python

Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Target audience is the natural language processing (NLP) and information retrieval (IR) community. If this feature list left you scratching your head, you can first read more about the Vector Space Model and unsupervised document analysis on Wikipedia.

lectures - Oxford Deep NLP 2017 course

  •    

This repository contains the lecture slides and course description for the Deep Natural Language Processing course offered in Hilary Term 2017 at the University of Oxford. This is an applied course focussing on recent advances in analysing and generating speech and text using recurrent neural networks. We introduce the mathematical definitions of the relevant machine learning models and derive their associated optimisation algorithms. The course covers a range of applications of neural networks in NLP including analysing latent dimensions in text, transcribing speech to text, translating between languages, and answering questions. These topics are organised into three high level themes forming a progression from understanding the use of neural networks for sequential language modelling, to understanding their use as conditional language models for transduction tasks, and finally to approaches employing these techniques in combination with other mechanisms for advanced applications. Throughout the course the practical implementation of such models on CPU and GPU hardware is also discussed.

neuralmonkey - An open-source tool for sequence learning in NLP built on TensorFlow.

  •    Python

The Neural Monkey package provides a higher level abstraction for sequential neural network models, most prominently in Natural Language Processing (NLP). It is built on TensorFlow. It can be used for fast prototyping of sequential models in NLP which can be used e.g. for neural machine translation or sentence classification. The higher-level API brings together a collection of standard building blocks (RNN encoder and decoder, multi-layer perceptron) and a simple way of adding new building blocks implemented directly in TensorFlow.

thinc - 🔮 spaCy's Machine Learning library for NLP in Python

  •    Assembly

Thinc is the machine learning library powering spaCy. It features a battle-tested linear model designed for large sparse learning problems, and a flexible neural network model under development for spaCy v2.0. Thinc is a practical toolkit for implementing models that follow the "Embed, encode, attend, predict" architecture. It's designed to be easy to install, efficient for CPU usage and optimised for NLP and deep learning with text – in particular, hierarchically structured input and variable-length sequences.

fastText_multilingual - Multilingual word vectors in 78 languages

  •    Jupyter

Facebook recently open-sourced word vectors in 89 languages. However these vectors are monolingual; meaning that while similar words within a language share similar vectors, translation words from different languages do not have similar vectors. In a recent paper at ICLR 2017, we showed how the SVD can be used to learn a linear transformation (a matrix), which aligns monolingual vectors from two languages in a single vector space. In this repository we provide 78 matrices, which can be used to align the majority of the fastText languages in a single space. Word embeddings define the similarity between two words by the normalised inner product of their vectors. The matrices in this repository place languages in a single space, without changing any of these monolingual similarity relationships. When you use the resulting multilingual vectors for monolingual tasks, they will perform exactly the same as the original vectors. To learn more about word embeddings, check out Colah's blog or Sam's introduction to vector representations.

NCRFpp - NCRF++, an Open-source Neural Sequence Labeling Toolkit

  •    Python

Sequence labeling models are quite popular in many NLP tasks, such as Named Entity Recognition (NER), part-of-speech (POS) tagging and word segmentation. State-of-the-art sequence labeling models mostly utilize the CRF structure with input word features. LSTM (or bidirectional LSTM) is a popular deep learning based feature extractor in sequence labeling task. And CNN can also be used due to faster computation. Besides, features within word are also useful to represent word, which can be captured by character LSTM or character CNN structure or human-defined neural features. NCRF++ is a PyTorch based framework with flexiable choices of input features and output structures. The design of neural sequence labeling models with NCRF++ is fully configurable through a configuration file, which does not require any code work. NCRF++ is a neural version of CRF++, which is a famous statistical CRF framework.

pynlpl - PyNLPl, pronounced as 'pineapple', is a Python library for Natural Language Processing

  •    Python

PyNLPl, pronounced as 'pineapple', is a Python library for Natural Language Processing. It contains various modules useful for common, and less common, NLP tasks. PyNLPl can be used for basic tasks such as the extraction of n-grams and frequency lists, and to build simple language model. There are also more complex data types and algorithms. Moreover, there are parsers for file formats common in NLP (e.g. FoLiA/Giza/Moses/ARPA/Timbl/CQL). There are also clients to interface with various NLP specific servers. PyNLPl most notably features a very extensive library for working with FoLiA XML (Format for Linguistic Annotatation). The library is a divided into several packages and modules. It works on Python 2.7, as well as Python 3.

grokking-pytorch - The Hitchiker's Guide to PyTorch

  •    

PyTorch is a flexible deep learning framework that allows automatic differentiation through dynamic neural networks (i.e., networks that utilise dynamic control flow like if statements and while loops). It supports GPU acceleration, distributed training, various optimisations, and plenty more neat features. These are some notes on how I think about using PyTorch, and don't encompass all parts of the library or every best practice, but may be helpful to others. Neural networks are a subclass of computation graphs. Computation graphs receive input data, and data is routed to and possibly transformed by nodes which perform processing on the data. In deep learning, the neurons (nodes) in neural networks typically transform data with parameters and differentiable functions, such that the parameters can be optimised to minimise a loss via gradient descent. More broadly, the functions can be stochastic, and the structure of the graph can be dynamic. So while neural networks may be a good fit for dataflow programming, PyTorch's API has instead centred around imperative programming, which is a more common way for thinking about programs. This makes it easier to read code and reason about complex programs, without necessarily sacrificing much performance; PyTorch is actually pretty fast, with plenty of optimisations that you can safely forget about as an end user (but you can dig in if you really want to).

practical-pytorch - PyTorch tutorials demonstrating modern techniques with readable code

  •    Jupyter

These tutorials have been merged into the official PyTorch tutorials. Please go there for better maintained versions of these tutorials compatible with newer versions of PyTorch. Learn PyTorch with project-based tutorials. These tutorials demonstrate modern techniques with readable code and use regular data from the internet.

deep-learning-book - Repository for "Introduction to Artificial Neural Networks and Deep Learning: A Practical Guide with Applications in Python"

  •    Jupyter

Repository for the book Introduction to Artificial Neural Networks and Deep Learning: A Practical Guide with Applications in Python. Deep learning is not just the talk of the town among tech folks. Deep learning allows us to tackle complex problems, training artificial neural networks to recognize complex patterns for image and speech recognition. In this book, we'll continue where we left off in Python Machine Learning and implement deep learning algorithms in PyTorch.

nlp-architect - NLP Architect by Intel AI Lab: Python library for exploring the state-of-the-art deep learning topologies and techniques for natural language processing and natural language understanding

  •    Python

NLP Architect is an open-source Python library for exploring state-of-the-art deep learning topologies and techniques for natural language processing and natural language understanding. It is intended to be a platform for future research and collaboration. Framework documentation on NLP models, algorithms, and modules, and instructions on how to contribute can be found at our main documentation site.