Pine - :evergreen_tree: Aimbot powered by real-time object detection with neural networks, GPU accelerated with Nvidia

  •        290

Pine is an aimbot powered by real-time object detection with neural networks. This software can be tweaked to work smoothly in CS:GO, Fortnite, and Overwatch. Pine also has built-in support for Nvidia's CUDA toolkit and is optimized to achieve extremely high object-detection FPS. It is GPU accelerated and blazingly fast.

https://github.com/petercunha/Pine

Tags
Implementation
License
Platform

   




Related Projects

lightnet - 🌓 Bringing pjreddie's DarkNet out of the shadows #yolo

  •    C

LightNet provides a simple and efficient Python interface to DarkNet, a neural network library written by Joseph Redmon that's well known for its state-of-the-art object detection models, YOLO and YOLOv2. LightNet's main purpose for now is to power Prodigy's upcoming object detection and image segmentation features. However, it may be useful to anyone interested in the DarkNet library. Once you've downloaded LightNet, you can install a model using the lightnet download command. This will save the models in the lightnet/data directory. If you've installed LightNet system-wide, make sure to run the command as administrator.

darknet_ros - YOLO ROS: Real-Time Object Detection for ROS

  •    C++

This is a ROS package developed for object detection in camera images. You only look once (YOLO) is a state-of-the-art, real-time object detection system. In the following ROS package you are able to use YOLO (V3) on GPU and CPU. The pre-trained model of the convolutional neural network is able to detect pre-trained classes including the data set from VOC and COCO, or you can also create a network with your own detection objects. For more information about YOLO, Darknet, available training data and training YOLO see the following link: YOLO: Real-Time Object Detection. The YOLO packages have been tested under ROS Noetic and Ubuntu 20.04. Note: We also provide branches that work under ROS Melodic, ROS Foxy and ROS2.

darkflow - Translate darknet to tensorflow

  •    Python

Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In case the weight file cannot be found, I uploaded some of mine here, which include yolo-full and yolo-tiny of v1.0, tiny-yolo-v1.1 of v1.1 and yolo, tiny-yolo-voc of v2.

BMW-YOLOv4-Training-Automation - This repository allows you to get started with training a state-of-the-art Deep Learning model with little to no configuration needed! You provide your labeled dataset or label your dataset using our BMW-LabelTool-Lite and you can start the training right away and monitor it in many different ways like TensorBoard or a custom REST API and GUI

  •    Python

This repository, based on AlexeyAB's darknet repro, allows you to get started with training a state-of-the-art Deep Learning model with little to no configuration needed! You provide your labeled dataset and you can start the training right away and monitor it in many different ways like TensorBoard or a custom REST API and GUI. Training with YOLOv4 has never been so easy. This repository has also cross compatibility with Yolov3 training.


mAP - mean Average Precision - This code evaluates the performance of your neural net for object recognition

  •    Python

This code will evaluate the performance of your neural net for object recognition. In practice, a higher mAP value indicates a better performance of your neural net, given your ground-truth and set of classes.

ImageAI - A python library built to empower developers to build applications and systems with self-contained Computer Vision capabilities

  •    Python

A python library built to empower developers to build applications and systems with self-contained Deep Learning and Computer Vision capabilities using simple and few lines of code. Built with simplicity in mind, ImageAI supports a list of state-of-the-art Machine Learning algorithms for image prediction, custom image prediction, object detection, video detection, video object tracking and image predictions trainings. ImageAI currently supports image prediction and training using 4 different Machine Learning algorithms trained on the ImageNet-1000 dataset. ImageAI also supports object detection, video detection and object tracking using RetinaNet, YOLOv3 and TinyYOLOv3 trained on COCO dataset. Eventually, ImageAI will provide support for a wider and more specialized aspects of Computer Vision including and not limited to image recognition in special environments and special fields.

SiaNet - An easy to use C# deep learning library with CUDA/OpenCL support

  •    CSharp

Developing a C# wrapper to help developer easily create and train deep neural network models. The below is a classification example with Titanic dataset. Able to reach 75% accuracy within 10 epoch.

BMW-TensorFlow-Training-GUI - This repository allows you to get started with a gui based training a State-of-the-art Deep Learning model with little to no configuration needed! NoCode training with TensorFlow has never been so easy

  •    Python

This repository allows you to get started with training a State-of-the-art Deep Learning model with little to no configuration needed! You provide your labeled dataset and you can start the training right away and monitor it with TensorBoard. You can even test your model with our built-in Inference REST API. Training with TensorFlow has never been so easy.

pytorch-yolo-v3 - A PyTorch implementation of the YOLO v3 object detection algorithm

  •    Python

[UPDATE] : This repo serves as a driver code for my research. I just graduated college, and am very busy looking for research internship / fellowship roles before eventually applying for a masters. I won't have the time to look into issues for the time being. Thank you. This repository contains code for a object detector based on YOLOv3: An Incremental Improvement, implementedin PyTorch. The code is based on the official code of YOLO v3, as well as a PyTorch port of the original code, by marvis. One of the goals of this code is to improve upon the original port by removing redundant parts of the code (The official code is basically a fully blown deep learning library, and includes stuff like sequence models, which are not used in YOLO). I've also tried to keep the code minimal, and document it as well as I can.

tensorflow-image-detection - A generic image detection program that uses Google's Machine Learning library, Tensorflow and a pre-trained Deep Learning Convolutional Neural Network model called Inception

  •    Python

A generic image detection program that uses Google's Machine Learning library, Tensorflow and a pre-trained Deep Learning Convolutional Neural Network model called Inception. This model has been pre-trained for the ImageNet Large Visual Recognition Challenge using the data from 2012, and it can differentiate between 1,000 different classes, like Dalmatian, dishwasher etc. The program applies Transfer Learning to this existing model and re-trains it to classify a new set of images.

Gaussian_YOLOv3 - Gaussian YOLOv3: An Accurate and Fast Object Detector Using Localization Uncertainty for Autonomous Driving (ICCV, 2019)

  •    C

The proposed algorithm is implemented based on the YOLOv3 official code. The provided example weight file ("Gaussian_yolov3_BDD.weights") is not the weight file used in the paper, but newly trained weight for release code validation. Because this weight file is more accurate than the weight used in the paper, we provide this file in the repository.

detection-2016-nipsws - Hierarchical Object Detection with Deep Reinforcement Learning

  •    Python

We present a method for performing hierarchical object detection in images guided by a deep reinforcement learning agent. The key idea is to focus on those parts of the image that contain richer information and zoom on them. We train an intelligent agent that, given an image window, is capable of deciding where to focus the attention among five different predefined region candidates (smaller windows). This procedure is iterated providing a hierarchical image analysis. We compare two different candidate proposal strategies to guide the object search: with and without overlap. Moreover, our work compares two different strategies to extract features from a convolutional neural network for each region proposal: a first one that computes new feature maps for each region proposal, and a second one that computes the feature maps for the whole image to later generate crops for each region proposal.

PyCNN - Image Processing with Cellular Neural Networks in Python

  •    Python

Cellular Neural Networks (CNN) [wikipedia] [paper] are a parallel computing paradigm that was first proposed in 1988. Cellular neural networks are similar to neural networks, with the difference that communication is allowed only between neighboring units. Image Processing is one of its applications. CNN processors were designed to perform image processing; specifically, the original application of CNN processors was to perform real-time ultra-high frame-rate (>10,000 frame/s) processing unachievable by digital processors. This python library is the implementation of CNN for the application of Image Processing.

OpenLabeling - Open Source labeling tool to generate the training data in the format YOLO requires.

  •    Python

Bounding box labeler tool to generate the training data in the format YOLO v2 requires. The idea is to use OpenCV so that later it uses SIFT and Tracking algorithms to make labeling easier.

tf_trt_models - TensorFlow models accelerated with NVIDIA TensorRT

  •    Python

This repository contains scripts and documentation to use TensorFlow image classification and object detection models on NVIDIA Jetson. The models are sourced from the TensorFlow models repository and optimized using TensorRT. Flash your Jetson TX2 with JetPack 3.2 (including TensorRT).






We have large collection of open source products. Follow the tags from Tag Cloud >>


Open source products are scattered around the web. Please provide information about the open source projects you own / you use. Add Projects.