functional_intro_to_python - A functional, Data Science focused introduction to Python

  •        11

The first section is an intentionally brief, functional, data science centric introduction to Python. The assumption is a someone with zero experience in programming can follow this tutorial and learn Python with the smallest amount of information possible. The sections after that, involve varying levels of difficulty and cover topics as diverse as Machine Learning and Linear Optimization to build systems and commandline tools.

https://github.com/noahgift/functional_intro_to_python

Tags
Implementation
License
Platform

   




Related Projects

practical-machine-learning-with-python - Master the essential skills needed to recognize and solve complex real-world problems with Machine Learning and Deep Learning by leveraging the highly popular Python Machine Learning Eco-system

  •    Jupyter

"Data is the new oil" is a saying which you must have heard by now along with the huge interest building up around Big Data and Machine Learning in the recent past along with Artificial Intelligence and Deep Learning. Besides this, data scientists have been termed as having "The sexiest job in the 21st Century" which makes it all the more worthwhile to build up some valuable expertise in these areas. Getting started with machine learning in the real world can be overwhelming with the vast amount of resources out there on the web. "Practical Machine Learning with Python" follows a structured and comprehensive three-tiered approach packed with concepts, methodologies, hands-on examples, and code. This book is packed with over 500 pages of useful information which helps its readers master the essential skills needed to recognize and solve complex problems with Machine Learning and Deep Learning by following a data-driven mindset. By using real-world case studies that leverage the popular Python Machine Learning ecosystem, this book is your perfect companion for learning the art and science of Machine Learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute Machine Learning systems and projects successfully.

data-science-your-way - Ways of doing Data Science Engineering and Machine Learning in R and Python

  •    Jupyter

These series of tutorials on Data Science engineering will try to compare how different concepts in the discipline can be implemented in the two dominant ecosystems nowadays: R and Python. We will do this from a neutral point of view. Our opinion is that each environment has good and bad things, and any data scientist should know how to use both in order to be as prepared as posible for job market or to start personal project.

python-machine-learning-book-2nd-edition - The "Python Machine Learning (2nd edition)" book code repository and info resource

  •    Jupyter

Python Machine Learning, 2nd Ed. To access the code materials for a given chapter, simply click on the open dir links next to the chapter headlines to navigate to the chapter subdirectories located in the code/ subdirectory. You can also click on the ipynb links below to open and view the Jupyter notebook of each chapter directly on GitHub.

dive-into-machine-learning - Dive into Machine Learning with Python Jupyter notebook and scikit-learn!

  •    

I learned Python by hacking first, and getting serious later. I wanted to do this with Machine Learning. If this is your style, join me in getting a bit ahead of yourself. I suggest you get your feet wet ASAP. You'll boost your confidence.

evidently - Interactive reports to analyze machine learning models during validation or production monitoring

  •    Jupyter

Interactive reports and JSON profiles to analyze, monitor and debug machine learning models. Evidently helps evaluate machine learning models during validation and monitor them in production. The tool generates interactive visual reports and JSON profiles from pandas DataFrame or csv files. You can use visual reports for ad hoc analysis, debugging and team sharing, and JSON profiles to integrate Evidently in prediction pipelines or with other visualization tools.


business-machine-learning - A curated list of practical business machine learning (BML) and business data science (BDS) applications for Accounting, Customer, Employee, Legal, Management and Operations (by @firmai)

  •    Jupyter

Animated Investment Management Research at Sov.ai — Sponsoring open source AI, Machine learning, and Data Science initiatives. A curated list of applied business machine learning (BML) and business data science (BDS) examples and libraries. The code in this repository is in Python (primarily using jupyter notebooks) unless otherwise stated. The catalogue is inspired by awesome-machine-learning.

awesome-google-colab - Google Colaboratory Notebooks and Repositories (by @firmai)

  •    Jupyter

A curated list of repositories with fully functional click-and-run colab notebooks with data, code and description. The code in these repositories are in Python unless otherwise stated. To learn more about they whys and hows of Colab see this post. For a few tips and tricks see this post.

machine_learning_basics - Plain python implementations of basic machine learning algorithms

  •    Jupyter

This repository contains implementations of basic machine learning algorithms in plain Python (Python Version 3.6+). All algorithms are implemented from scratch without using additional machine learning libraries. The intention of these notebooks is to provide a basic understanding of the algorithms and their underlying structure, not to provide the most efficient implementations. After several requests I started preparing notebooks on how to preprocess datasets for machine learning. Within the next months I will add one notebook for each kind of dataset (text, images, ...). As before, the intention of these notebooks is to provide a basic understanding of the preprocessing steps, not to provide the most efficient implementations.

spark-py-notebooks - Apache Spark & Python (pySpark) tutorials for Big Data Analysis and Machine Learning as IPython / Jupyter notebooks

  •    Jupyter

This is a collection of IPython notebook/Jupyter notebooks intended to train the reader on different Apache Spark concepts, from basic to advanced, by using the Python language. If Python is not your language, and it is R, you may want to have a look at our R on Apache Spark (SparkR) notebooks instead. Additionally, if your are interested in being introduced to some basic Data Science Engineering, you might find these series of tutorials interesting. There we explain different concepts and applications using Python and R.

Math-of-Machine-Learning-Course-by-Siraj - Implements common data science methods and machine learning algorithms from scratch in python

  •    Jupyter

This repository was initially created to submit machine learning assignments for Siraj Raval's online machine learning course. The purpose of the course was to learn how to implement the most common machine learning algorithms from scratch (without using machine learning libraries such as tensorflow, PyTorch, scikit-learn, etc). Although that course has ended now, I am continuing to learn data science and machine learning from other sources such as Coursera, online blogs, and attending machine learning lectures at University of Toronto. Sticking to the theme of implementing machine learning algortihms from scratch, I will continue to post detailed notebooks in python here as I learn more.

ml-workspace - 🛠 All-in-one web-based IDE specialized for machine learning and data science.

  •    Jupyter

The ML workspace is an all-in-one web-based IDE specialized for machine learning and data science. It is simple to deploy and gets you started within minutes to productively built ML solutions on your own machines. This workspace is the ultimate tool for developers preloaded with a variety of popular data science libraries (e.g., Tensorflow, PyTorch, Keras, Sklearn) and dev tools (e.g., Jupyter, VS Code, Tensorboard) perfectly configured, optimized, and integrated. The workspace requires Docker to be installed on your machine (📖 Installation Guide).

useR-machine-learning-tutorial - useR! 2016 Tutorial: Machine Learning Algorithmic Deep Dive http://user2016

  •    Jupyter

Instructions for how to install the necessary software for this tutorial is available here. Data for the tutorial can be downloaded by running ./data/get-data.sh (requires wget). Certain algorithms don't scale well when there are millions of features. For example, decision trees require computing some sort of metric (to determine the splits) on all the feature values (or some fraction of the values as in Random Forest and Stochastic GBM). Therefore, computation time is linear in the number of features. Other algorithms, such as GLM, scale much better to high-dimensional (n << p) and wide data with appropriate regularization (e.g. Lasso, Elastic Net, Ridge).

tpot - A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming

  •    Python

Consider TPOT your Data Science Assistant. TPOT is a Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.TPOT will automate the most tedious part of machine learning by intelligently exploring thousands of possible pipelines to find the best one for your data.

machine-learning - :earth_americas: machine learning algorithms tutorials (mainly in Python3)

  •    HTML

This is a continuously updated repository that documents personal journey on learning data science, machine learning related topics. Forecasting methods for timeseries-based data.

machine-learning-asset-management - Machine Learning in Asset Management (by @firmai)

  •    Jupyter

Follow this link for SSRN paper. Animated Investment Management Research at Sov.ai — Sponsoring open source AI, Machine learning, and Data Science initiatives.

industry-machine-learning - A curated list of applied machine learning and data science notebooks and libraries across different industries (by @firmai)

  •    Jupyter

Animated Investment Management Research at Sov.ai — Sponsoring open source AI, Machine learning, and Data Science initiatives. Have a look at the newly started FirmAI Medium publication where we have experts of AI in business, write about their topics of interest.

open_source_demos - A collection of demos showcasing automated feature engineering and machine learning in diverse use cases

  •    Jupyter

This repository consists of a series of demos that leverage EvalML, Featuretools, Woodwork, and Compose. The demos rely on a different subset of these libraries and to various levels of complexity. Building an accurate machine learning model requires several important steps. One of the most complex and time consuming is extracting information through features. Finding the right features is a crucial component of both interpreting the dataset as a whole as well as building a model with great predictive power. Another core component of any machine learning process is selecting the right estimator to use for the problem at hand. By combining the best features with the most accurate estimator and its corresponding hyperparameters, we can build a machine learning model that can generalize well to unknown data. Just as the process of feature engineering is made simple by Featuretools, we have made automated machine learning easy to implement using EvalML.






We have large collection of open source products. Follow the tags from Tag Cloud >>


Open source products are scattered around the web. Please provide information about the open source projects you own / you use. Add Projects.