- 17

NLP Architect is an open-source Python library for exploring state-of-the-art deep learning topologies and techniques for natural language processing and natural language understanding. It is intended to be a platform for future research and collaboration. Framework documentation on NLP models, algorithms, and modules, and instructions on how to contribute can be found at our main documentation site.

http://nlp_architect.nervanasys.com/https://github.com/NervanaSystems/nlp-architect

Tags | deeplearning nlp nlu tensorflow dynet keras |

Implementation | Python |

License | Apache |

Platform | Windows Linux |

DeepQA is a library for doing high-level NLP tasks with deep learning, particularly focused on various kinds of question answering. DeepQA is built on top of Keras and TensorFlow, and can be thought of as an interface to these systems that makes NLP easier. DeepQA is built using Python 3. The easiest way to set up a compatible environment is to use Conda. This will set up a virtual environment with the exact version of Python used for development along with all the dependencies needed to run DeepQA.

deep-learning question-answering nlpImplementation of research papers on Deep Learning+ NLP+ CV in Python using Keras, Tensorflow and Scikit Learn.

deep-learning nlp computer-vision audio-processingAiLearning: 机器学习 - MachineLearning - ML、深度学习 - DeepLearning - DL、自然语言处理 NLP

fp-growth apriori mahchine-leaning naivebayes svm adaboost kmeans svd pca logistic regression recommendedsystem sklearn scikit-learn nlp deeplearning dnn lstm rnnA comprehensive list of Deep Learning / Artificial Intelligence and Machine Learning tutorials - rapidly expanding into areas of AI/Deep Learning / Machine Vision / NLP and industry specific areas such as Automotives, Retail, Pharma, Medicine, Healthcare by Tarry Singh until at-least 2020 until he finishes his Ph.D. (which might end up being inter-stellar cosmic networks! Who knows! 😀)

machine-learning deep-learning tensorflow pytorch keras matplotlib aws kaggle pandas scikit-learn torch artificial-intelligence neural-network convolutional-neural-networks tensorflow-tutorials python-data ipython-notebook capsule-networkThe Neural Monkey package provides a higher level abstraction for sequential neural network models, most prominently in Natural Language Processing (NLP). It is built on TensorFlow. It can be used for fast prototyping of sequential models in NLP which can be used e.g. for neural machine translation or sentence classification. The higher-level API brings together a collection of standard building blocks (RNN encoder and decoder, multi-layer perceptron) and a simple way of adding new building blocks implemented directly in TensorFlow.

neural-machine-translation tensorflow nlp sequence-to-sequence neural-networks nmt machine-translation mt deep-learning image-captioning encoder-decoder gpuJohn Snow Labs Spark-NLP is a natural language processing library built on top of Apache Spark ML. It provides simple, performant & accurate NLP annotations for machine learning pipelines, that scale easily in a distributed environment. This library has been uploaded to the spark-packages repository https://spark-packages.org/package/JohnSnowLabs/spark-nlp .

nlp nlu natural-language-processing natural-language-understanding spark spark-ml pyspark machine-learning named-entity-recognition sentiment-analysis lemmatizer spell-checker tokenizer entity-extraction stemmer part-of-speech-tagger annotation-frameworkDeep Learning NLP Pipeline implemented on Tensorflow. Following the 'simplicity' rule, this project aims to use the deep learning library of Tensorflow to implement new NLP pipeline. You can extend the project to train models with your own corpus/languages. Pretrained models of Chinese corpus are distributed. Free RESTful NLP API are also provided. Visit http://www.deepnlp.org/api/v1.0/pipeline for details. 下载预训练模型 If you install deepnlp via pip, the pre-trained models are not distributed due to size restriction. You can download full models for 'Segment', 'POS' en and zh, 'NER' zh, zh_entertainment, zh_o2o, 'Textsum' by calling the download function.

While research in Deep Learning continues to improve the world, we use a bunch of tricks to implement algorithms with TensorLayer day to day. Here are a summary of the tricks to use TensorLayer. If you find a trick that is particularly useful in practice, please open a Pull Request to add it to the document. If we find it to be reasonable and verified, we will merge it in.

tensorlayer tensorflow deep-learning machine-learning data-science neural-network reinforcement-learning neural-networks tensorflow-tutorials tensorflow-models computer-vision tensorflow-framework tensorflow-library tflearn keras tensorboard nlp natural-language-processing lasagne tensorflow-experimentsHow simple is it to cause a deep neural network to misclassify an image if an attacker is only allowed to modify the color of one pixel and only see the prediction probability? Turns out it is very simple. In many cases, an attacker can even cause the network to return any answer they want. The following project is a Keras reimplementation and tutorial of "One pixel attack for fooling deep neural networks".

keras cnn cifar10 machine-learning tensorflow deep-learning neural-network imagenet image-processing nlpSome examples require MNIST dataset for training and testing. Don't worry, this dataset will automatically be downloaded when running examples (with input_data.py). MNIST is a database of handwritten digits, for a quick description of that dataset, you can check this notebook.

recurrent-neural-networks convolutional-neural-networks deep-learning-tutorial tensorflow tensorlayer keras deep-reinforcement-learning tensorflow-tutorials deep-learning machine-learning notebook autoencoder multi-layer-perceptron reinforcement-learning tflearn neural-networks neural-network neural-machine-translation nlp cnnWelcome to my GitHub repo. I am a Data Scientist and I code in R, Python and Wolfram Mathematica. Here you will find some Machine Learning, Deep Learning, Natural Language Processing and Artificial Intelligence models I developed.

anomaly-detection deep-learning autoencoder keras keras-models denoising-autoencoders generative-adversarial-network glove keras-layer word2vec nlp natural-language-processing sentiment-analysis opencv segnet resnet-50 variational-autoencoder t-sne svm-classifier latent-dirichlet-allocationSnips NLU (Natural Language Understanding) is a Python library that allows to parse sentences written in natural language and extracts structured information. To find out how to use Snips NLU please refer to our documentation, it will provide you with a step-by-step guide on how to use and setup our library.

nlp nlu machine-learning data-science text-classification intent-classification ner named-entity-recognition slot-filling intent-parser information-extraction snips natural-language-processingA tutorial given by Chris Dyer, Yoav Goldberg, and Graham Neubig at EMNLP 2016 in Austin. The tutorial covers the basic of neural networks for NLP, and how to implement a variety of networks simply and efficiently in the DyNet toolkit.

Deep learning is a group of exciting new technologies for neural networks. Through a combination of advanced training techniques and neural network architectural components, it is now possible to create neural networks of much greater complexity. Deep learning allows a neural network to learn hierarchies of information in a way that is like the function of the human brain. This course will introduce the student to computer vision with Convolution Neural Networks (CNN), time series analysis with Long Short-Term Memory (LSTM), classic neural network structures and application to computer security. High Performance Computing (HPC) aspects will demonstrate how deep learning can be leveraged both on graphical processing units (GPUs), as well as grids. Focus is primarily upon the application of deep learning to problems, with some introduction mathematical foundations. Students will use the Python programming language to implement deep learning using Google TensorFlow and Keras. It is not necessary to know Python prior to this course; however, familiarity of at least one programming language is assumed. This course will be delivered in a hybrid format that includes both classroom and online instruction. This syllabus presents the expected class schedule, due dates, and reading assignments. Download current syllabus.

neural-network machine-learning tensorflow keras deeplearningImport key components to build HelloBot. Create skills as pre-defined responses for a user's input containing specific keywords. Every skill returns response and confidence.

bot nlp chatbot dialogue-systems question-answering chitchat slot-filling intent-classification entity-extraction named-entity-recognition keras tensorflow deep-learning deep-neural-networks intent-detection dialogue-agents dialogue-manager:books: Series of Artificial Intelligence & Deep Learning, including Mathematics Fundamentals, Python Practices, NLP Application, etc. 💫 人工智能与深度学习实战，机器学习篇 | Tensoflow 篇

datascience machinelearning deeplearning neural-network natural-language-processing artificial-intelligenceThis chapter intends to introduce the main objects and concepts in TensorFlow. We also introduce how to access the data for the rest of the book and provide additional resources for learning about TensorFlow. After we have established the basic objects and methods in TensorFlow, we now want to establish the components that make up TensorFlow algorithms. We start by introducing computational graphs, and then move to loss functions and back propagation. We end with creating a simple classifier and then show an example of evaluating regression and classification algorithms.

tensorflow tensorflow-cookbook linear-regression neural-network tensorflow-algorithms rnn cnn svm nlp packtpub machine-learning tensorboard classification regression kmeans-clustering genetic-algorithm odeThis repository contains Keras/Tensorflow code for the "CRF-RNN" semantic image segmentation method, published in the ICCV 2015 paper Conditional Random Fields as Recurrent Neural Networks. This paper was initially described in an arXiv tech report. The online demo of this project won the Best Demo Prize at ICCV 2015. Original Caffe-based code of this project can be found here. Results produced with this Keras/Tensorflow code are almost identical to that with the Caffe-based version. The root directory of the clone will be referred to as crfasrnn_keras hereafter.

image-segmentation semantic-segmentation crf-as-rnn tensorflow keras crfasrnn crfasrnn-keras crfasrnn-tensorflow crf-rnn-tensorflow crf-rnn-kerasTensorflow implementation of End-To-End Memory Networks for language modeling (see Section 5). The original torch code from Facebook can be found here. This code requires Tensorflow. There is a set of sample Penn Tree Bank (PTB) corpus in data directory, which is a popular benchmark for measuring quality of these models. But you can use your own text data set which should be formated like this.

tensorflow memory-network nlp
We have large collection of open source products. Follow the tags from
Tag Cloud >>

Open source products are scattered around the web. Please provide information
about the open source projects you own / you use.
**Add Projects.**