open-solution-toxic-comments - Open solution to the Toxic Comment Classification Challenge

  •        3

Here, at Neptune we enjoy participating in the Kaggle competitions. Toxic Comment Classification Challenge is especially interesting because it touches important issue of online harassment. You need to be registered to neptune.ml to be able to use our predictions for your ensemble models.

https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
https://github.com/neptune-ml/open-solution-toxic-comments

Tags
Implementation
License
Platform

   




Related Projects

open-solution-home-credit - Open solution to the Home Credit Default Risk challenge :house_with_garden:

  •    Python

This is an open solution to the Home Credit Default Risk challenge 🏡. In this open source solution you will find references to the neptune.ml. It is free platform for community Users, which we use daily to keep track of our experiments. Please note that using neptune.ml is not necessary to proceed with this solution. You may run it as plain Python script 🐍.

painters - :art: Winning solution for the Painter by Numbers competition on Kaggle

  •    Python

This repository contains a 1st place solution for the Painter by Numbers competition on Kaggle. Below is a brief description of the dataset and approaches I've used to build and validate a predictive model. The challenge of the competition was to examine pairs of paintings and determine whether they were painted by the same artist. The training set consists of artwork images and their corresponding class labels (painters). Examples in the test set were split into 13 groups and all possible pairs within each group needed to be examined for the submission. The evaluation metric for the leaderboard was AUC (area under the curve).

Deep-Learning-Boot-Camp - A community run, 5-day PyTorch Deep Learning Bootcamp

  •    Jupyter

Tel-Aviv Deep Learning Bootcamp is an intensive (and free!) 5-day program intended to teach you all about deep learning. It is nonprofit focused on advancing data science education and fostering entrepreneurship. The Bootcamp is a prominent venue for graduate students, researchers, and data science professionals. It offers a chance to study the essential and innovative aspects of deep learning. Participation is via a donation to the A.L.S ASSOCIATION for promoting research of the Amyotrophic Lateral Sclerosis (ALS) disease.


benchm-ml - A minimal benchmark for scalability, speed and accuracy of commonly used open source implementations (R packages, Python scikit-learn, H2O, xgboost, Spark MLlib etc

  •    R

This project aims at a minimal benchmark for scalability, speed and accuracy of commonly used implementations of a few machine learning algorithms. The target of this study is binary classification with numeric and categorical inputs (of limited cardinality i.e. not very sparse) and no missing data, perhaps the most common problem in business applications (e.g. credit scoring, fraud detection or churn prediction). If the input matrix is of n x p, n is varied as 10K, 100K, 1M, 10M, while p is ~1K (after expanding the categoricals into dummy variables/one-hot encoding). This particular type of data structure/size (the largest) stems from this author's interest in some particular business applications. Note: While a large part of this benchmark was done in Spring 2015 reflecting the state of ML implementations at that time, this repo is being updated if I see significant changes in implementations or new implementations have become widely available (e.g. lightgbm). Also, please find a summary of the progress and learnings from this benchmark at the end of this repo.

Skater - Python Library for Model Interpretation/Explanations

  •    Python

Skater is a unified framework to enable Model Interpretation for all forms of model to help one build an Interpretable machine learning system often needed for real world use-cases(** we are actively working towards to enabling faithful interpretability for all forms models). It is an open source python library designed to demystify the learned structures of a black box model both globally(inference on the basis of a complete data set) and locally(inference about an individual prediction). The project was started as a research idea to find ways to enable better interpretability(preferably human interpretability) to predictive "black boxes" both for researchers and practioners. The project is still in beta phase.

ai-resources - Selection of resources to learn Artificial Intelligence / Machine Learning / Statistical Inference / Deep Learning / Reinforcement Learning

  •    

Update April 2017: It’s been almost a year since I posted this list of resources, and over the year there’s been an explosion of articles, videos, books, tutorials etc on the subject — even an explosion of ‘lists of resources’ such as this one. It’s impossible for me to keep this up to date. However, the one resource I would like to add is https://ml4a.github.io/ (https://github.com/ml4a) led by Gene Kogan. It’s specifically aimed at artists and the creative coding community. This is a very incomplete and subjective selection of resources to learn about the algorithms and maths of Artificial Intelligence (AI) / Machine Learning (ML) / Statistical Inference (SI) / Deep Learning (DL) / Reinforcement Learning (RL). It is aimed at beginners (those without Computer Science background and not knowing anything about these subjects) and hopes to take them to quite advanced levels (able to read and understand DL papers). It is not an exhaustive list and only contains some of the learning materials that I have personally completed so that I can include brief personal comments on them. It is also by no means the best path to follow (nowadays most MOOCs have full paths all the way from basic statistics and linear algebra to ML/DL). But this is the path I took and in a sense it's a partial documentation of my personal journey into DL (actually I bounced around all of these back and forth like crazy). As someone who has no formal background in Computer Science (but has been programming for many years), the language, notation and concepts of ML/SI/DL and even CS was completely alien to me, and the learning curve was not only steep, but vertical, treacherous and slippery like ice.

auto_ml - Automated machine learning for analytics & production

  •    Python

auto_ml is designed for production. Here's an example that includes serializing and loading the trained model, then getting predictions on single dictionaries, roughly the process you'd likely follow to deploy the trained model. All of these projects are ready for production. These projects all have prediction time in the 1 millisecond range for a single prediction, and are able to be serialized to disk and loaded into a new environment after training.

predicting_stock_prices - This is the coding challenge for "Predicting Stock Prices" by @Sirajology on Youtube

  •    Python

#predicting_stock_prices Stock Prediction Challenge by @Sirajology on Youtube. This is the code for the Stock Price Prediction challenge for 'Learn Python for Data Science #3' by @Sirajology on YouTube. The code uses the scikit-learn machine learning library to train a support vector regression on a stock price dataset from Google Finance to predict a future price. In the video, I use scikit-learn to build an ML model, but for the challenge you'll use the Keras library.

tensorwatch - Debugging, monitoring and visualization for Deep Learning and Reinforcement Learning

  •    Jupyter

TensorWatch is a debugging and visualization tool designed for deep learning and reinforcement learning. It fully leverages Jupyter Notebook to show real time visualizations and offers unique capabilities to query the live training process without having to sprinkle logging statements all over. You can also use TensorWatch to build your own UIs and dashboards. In addition, TensorWatch leverages several excellent libraries for visualizing model graph, review model statistics, explain prediction and so on. TensorWatch is under heavy development with a goal of providing a research platform for debugging machine learning in one easy to use, extensible and hackable package.

polyaxon - An open source platform for reproducible machine learning and deep learning on kubernetes

  •    Python

Welcome to Polyaxon, a platform for building, training, and monitoring large scale deep learning applications. Polyaxon deploys into any data center, cloud provider, or can be hosted and managed by Polyaxon, and it supports all the major deep learning frameworks such as Tensorflow, MXNet, Caffe, Torch, etc.

pycm - Multi-class confusion matrix library in Python

  •    Python

PyCM is a multi-class confusion matrix library written in Python that supports both input data vectors and direct matrix, and a proper tool for post-classification model evaluation that supports most classes and overall statistics parameters. PyCM is the swiss-army knife of confusion matrices, targeted mainly at data scientists that need a broad array of metrics for predictive models and an accurate evaluation of large variety of classifiers. threshold is added in version 0.9 for real value prediction.

DALEX - Descriptive mAchine Learning EXplanations

  •    R

Machine Learning models are widely used and have various applications in classification or regression tasks. Due to increasing computational power, availability of new data sources and new methods, ML models are more and more complex. Models created with techniques like boosting, bagging of neural networks are true black boxes. It is hard to trace the link between input variables and model outcomes. They are use because of high performance, but lack of interpretability is one of their weakest sides. In many applications we need to know, understand or prove how input variables are used in the model and what impact do they have on final model prediction. DALEX is a set of tools that help to understand how complex models are working.

spaCy - 💫 Industrial-strength Natural Language Processing (NLP) with Python and Cython

  •    Python

spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest research, and was designed from day one to be used in real products. spaCy comes with pre-trained statistical models and word vectors, and currently supports tokenization for 20+ languages. It features the fastest syntactic parser in the world, convolutional neural network models for tagging, parsing and named entity recognition and easy deep learning integration. It's commercial open-source software, released under the MIT license. 💫 Version 2.0 out now! Check out the new features here.

practical-machine-learning-with-python - Master the essential skills needed to recognize and solve complex real-world problems with Machine Learning and Deep Learning by leveraging the highly popular Python Machine Learning Eco-system

  •    Jupyter

"Data is the new oil" is a saying which you must have heard by now along with the huge interest building up around Big Data and Machine Learning in the recent past along with Artificial Intelligence and Deep Learning. Besides this, data scientists have been termed as having "The sexiest job in the 21st Century" which makes it all the more worthwhile to build up some valuable expertise in these areas. Getting started with machine learning in the real world can be overwhelming with the vast amount of resources out there on the web. "Practical Machine Learning with Python" follows a structured and comprehensive three-tiered approach packed with concepts, methodologies, hands-on examples, and code. This book is packed with over 500 pages of useful information which helps its readers master the essential skills needed to recognize and solve complex problems with Machine Learning and Deep Learning by following a data-driven mindset. By using real-world case studies that leverage the popular Python Machine Learning ecosystem, this book is your perfect companion for learning the art and science of Machine Learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute Machine Learning systems and projects successfully.

useR-machine-learning-tutorial - useR! 2016 Tutorial: Machine Learning Algorithmic Deep Dive http://user2016

  •    Jupyter

Instructions for how to install the necessary software for this tutorial is available here. Data for the tutorial can be downloaded by running ./data/get-data.sh (requires wget). Certain algorithms don't scale well when there are millions of features. For example, decision trees require computing some sort of metric (to determine the splits) on all the feature values (or some fraction of the values as in Random Forest and Stochastic GBM). Therefore, computation time is linear in the number of features. Other algorithms, such as GLM, scale much better to high-dimensional (n << p) and wide data with appropriate regularization (e.g. Lasso, Elastic Net, Ridge).

Kaggle-Solution - Solution Code for Kaggle Competition

  •    Python

This project contain my code for competition in kaggle.