ZZZ-RETIRED_openstt - RETIRED - OpenSTT is now retired

  •        756

RETIRED - OpenSTT is now retired. If you would like more information on Mycroft AI's open source STT projects, please visit:




Related Projects

delta - DELTA is a deep learning based natural language and speech processing platform.

  •    Python

DELTA is a deep learning based end-to-end natural language and speech processing platform. DELTA aims to provide easy and fast experiences for using, deploying, and developing natural language processing and speech models for both academia and industry use cases. DELTA is mainly implemented using TensorFlow and Python 3. For details of DELTA, please refer to this paper.

OpenNLP - Machine learning based toolkit for the processing of natural language text

  •    Java

The Apache OpenNLP library is a machine learning based toolkit for the processing of natural language text. It supports the most common NLP tasks, such as tokenization, sentence segmentation, part-of-speech tagging, named entity extraction, chunking, parsing, and coreference resolution. These tasks are usually required to build more advanced text processing services. OpenNLP also includes maximum entropy and perceptron based machine learning.

spark-nlp - Natural Language Understanding Library for Apache Spark.

  •    Jupyter

John Snow Labs Spark-NLP is a natural language processing library built on top of Apache Spark ML. It provides simple, performant & accurate NLP annotations for machine learning pipelines, that scale easily in a distributed environment. This library has been uploaded to the spark-packages repository https://spark-packages.org/package/JohnSnowLabs/spark-nlp .

sonus - :speech_balloon: /so.nus/ STT (speech to text) for Node with offline hotword detection

  •    Javascript

Sonus lets you quickly and easily add a VUI (Voice User Interface) to any hardware or software project. Just like Alexa, Google Now, and Siri, Sonus is always listening offline for a customizable hotword. Once that hotword is detected your speech is streamed to the cloud recognition service of your choice - then you get the results. Generally, running npm install should suffice. This module however, requires you to install SoX.

lectures - Oxford Deep NLP 2017 course


This repository contains the lecture slides and course description for the Deep Natural Language Processing course offered in Hilary Term 2017 at the University of Oxford. This is an applied course focussing on recent advances in analysing and generating speech and text using recurrent neural networks. We introduce the mathematical definitions of the relevant machine learning models and derive their associated optimisation algorithms. The course covers a range of applications of neural networks in NLP including analysing latent dimensions in text, transcribing speech to text, translating between languages, and answering questions. These topics are organised into three high level themes forming a progression from understanding the use of neural networks for sequential language modelling, to understanding their use as conditional language models for transduction tasks, and finally to approaches employing these techniques in combination with other mechanisms for advanced applications. Throughout the course the practical implementation of such models on CPU and GPU hardware is also discussed.

tensorflow-speech-recognition - 🎙Speech recognition using the tensorflow deep learning framework, sequence-to-sequence neural networks

  •    Python

Speech recognition using google's tensorflow deep learning framework, sequence-to-sequence neural networks. Replaces caffe-speech-recognition, see there for some background.

stt-benchmark - speech to text benchmark framework

  •    Python

This is a minimalist and extensible framework for benchmarking different speech-to-text engines. It has been developed and tested on Ubuntu 18.04 with Python3.6. This framework has been developed by Picovoice as part of the project Cheetah. Cheetah is Picovoice's speech-to-text engine specifically designed for IoT applications. Deep learning has been the main driver in recent improvements in speech recognition. But due to stringent compute/storage limitations of IoT platforms it is most beneficial to the cloud-based engines. Picovoice's proprietary deep learning technology enables transferring these improvements to IoT platforms with much lower CPU/memory footprint. The goal is to be able to run Cheetah on any platform with a C Compiler and a few MB of memory.

espnet - End-to-End Speech Processing Toolkit

  •    Shell

ESPnet is an end-to-end speech processing toolkit, mainly focuses on end-to-end speech recognition, and end-to-end text-to-speech. ESPnet uses chainer and pytorch as a main deep learning engine, and also follows Kaldi style data processing, feature extraction/format, and recipes to provide a complete setup for speech recognition and other speech processing experiments. To use cuda (and cudnn), make sure to set paths in your .bashrc or .bash_profile appropriately.

pyannote-audio - Neural building blocks for speaker diarization: speech activity detection, speaker change detection, speaker embedding

  •    Python

Open Phd/postdoc positions at LIMSI combining machine learning, NLP, speech processing, and computer vision. If you use pyannote.audio in your research, please use the following citations.

voice-elements - :speaker: Web Component wrapper to the Web Speech API, that allows you to do voice recognition and speech synthesis using Polymer

  •    HTML

Web Component wrapper to the Web Speech API, that allows you to do voice recognition (speech to text) and speech synthesis (text to speech) using Polymer. Or download as ZIP.

Gate - General Architecture for Text Engineering

  •    Java

GATE excels at text analysis of all shapes and sizes. It provides support for diverse language processing tasks such as parsers, morphology, tagging, Information Retrieval tools, Information Extraction components for various languages, and many others. It provides support to measure, evaluate, model and persist the data structure. It could analyze text or speech. It has built-in support for machine learning and also adds support for different implementation of machine learning via plugin.

p5.speech - Web Audio Speech Synthesis / Recognition for p5.js

  •    Javascript

p5.speech is a JavaScript library that provides simple, clear access to the Web Speech and Speech Recognition APIs, allowing for the easy creation of sketches that can talk and listen. It consists of two object classes (p5.Speech and p5.SpeechRec) along with accessor functions to speak and listen for text, change parameters (synthesis voices, recognition models, etc.), and retrieve callbacks from the system. Speech recognition requires launching from a server (e.g. a python simpleserver on a local machine).

CoreNLP - Stanford CoreNLP: A Java suite of core NLP tools.

  •    Java

Stanford CoreNLP provides a set of natural language analysis tools which can take raw English language text input and give the base forms of words, their parts of speech, whether they are names of companies, people, etc., normalize dates, times, and numeric quantities, mark up the structure of sentences in terms of phrases and word dependencies, and indicate which noun phrases refer to the same entities. It provides the foundational building blocks for higher level text understanding applications.

DeepSpeech - A TensorFlow implementation of Baidu's DeepSpeech architecture

  •    C

Project DeepSpeech is an open source Speech-To-Text engine. It uses a model trained by machine learning techniques, based on Baidu's Deep Speech research paper. Project DeepSpeech uses Google's TensorFlow project to make the implementation easier.

nodejs-speech - Node

  •    Javascript

The Cloud Speech API enables easy integration of Google speech recognition technologies into developer applications. Send audio and receive a text transcription from the Cloud Speech API service. Select or create a Cloud Platform project.

SpeechKITT - 🗣 A flexible GUI for Speech Recognition

  •    Javascript

Speech KITT makes it easy to add a GUI to sites using Speech Recognition. Whether you are using annyang, a different library or webkitSpeechRecognition directly, KITT will take care of the GUI. Speech KITT provides a graphical interface for the user to start or stop Speech Recognition and see its current status. It can also help guide the user on how to interact with your site using their voice, providing instructions and sample commands. It can even be used to carry a natural conversation with the user, asking questions the user can answer with his voice, and then asking follow up questions.

snips-nlu - Snips Python library to extract meaning from text

  •    Python

Snips NLU (Natural Language Understanding) is a Python library that allows to parse sentences written in natural language and extracts structured information. To find out how to use Snips NLU please refer to our documentation, it will provide you with a step-by-step guide on how to use and setup our library.

TextBlob - Simple, Pythonic, text processing--Sentiment analysis, part-of-speech tagging, noun phrase extraction, translation, and more

  •    Python

TextBlob is a Python (2 and 3) library for processing textual data. It provides a simple API for diving into common natural language processing (NLP) tasks such as part-of-speech tagging, noun phrase extraction, sentiment analysis, classification, translation, and more. TextBlob stands on the giant shoulders of NLTK and pattern, and plays nicely with both.

prose - :book: A Golang library for text processing, including tokenization, part-of-speech tagging, and named-entity extraction

  •    Go

prose is Go library for text (primarily English at the moment) processing that supports tokenization, part-of-speech tagging, named-entity extraction, and more. The library's functionality is split into subpackages designed for modular use.See the GoDoc documentation for more information.

annyang - :speech_balloon: Speech recognition for your site

  •    Javascript

A tiny javascript SpeechRecognition library that lets your users control your site with voice commands. annyang has no dependencies, weighs just 2 KB, and is free to use and modify under the MIT license.