AlphaPose - Multi-Person Pose Estimation System

  •        1970

Alpha Pose is an accurate multi-person pose estimator, which is the first open-source system that achieves 70+ mAP (72.3 mAP) on COCO dataset and 80+ mAP (82.1 mAP) on MPII dataset. To match poses that correspond to the same person across frames, we also provide an efficient online pose tracker called Pose Flow. It is the first open-source online pose tracker that achieves both 60+ mAP (66.5 mAP) and 50+ MOTA (58.3 MOTA) on PoseTrack Challenge dataset. Note: Please read PoseFlow/ for details.



Related Projects

ImageAI - A python library built to empower developers to build applications and systems with self-contained Computer Vision capabilities

  •    Python

A python library built to empower developers to build applications and systems with self-contained Deep Learning and Computer Vision capabilities using simple and few lines of code. Built with simplicity in mind, ImageAI supports a list of state-of-the-art Machine Learning algorithms for image prediction, custom image prediction, object detection, video detection, video object tracking and image predictions trainings. ImageAI currently supports image prediction and training using 4 different Machine Learning algorithms trained on the ImageNet-1000 dataset. ImageAI also supports object detection, video detection and object tracking using RetinaNet, YOLOv3 and TinyYOLOv3 trained on COCO dataset. Eventually, ImageAI will provide support for a wider and more specialized aspects of Computer Vision including and not limited to image recognition in special environments and special fields.

OpenFace - OpenFace – a state-of-the art tool intended for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation

  •    C++

Over the past few years, there has been an increased interest in automatic facial behavior analysis and understanding. We present OpenFace – a tool intended for computer vision and machine learning researchers, affective computing community and people interested in building interactive applications based on facial behavior analysis. OpenFace is the first toolkit capable of facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation with available source code for both running and training the models. The computer vision algorithms which represent the core of OpenFace demonstrate state-of-the-art results in all of the above mentioned tasks. Furthermore, our tool is capable of real-time performance and is able to run from a simple webcam without any specialist hardware. OpenFace is an implementation of a number of research papers from the Multicomp group, Language Technologies Institute at the Carnegie Mellon University and Rainbow Group, Computer Laboratory, University of Cambridge. The founder of the project and main developer is Tadas Baltrušaitis.

AB3DMOT - (IROS 2020, ECCVW 2020) Official Python Implementation for "3D Multi-Object Tracking: A Baseline and New Evaluation Metrics"

  •    Python

3D multi-object tracking (MOT) is an essential component technology for many real-time applications such as autonomous driving or assistive robotics. However, recent works for 3D MOT tend to focus more on developing accurate systems giving less regard to computational cost and system complexity. In contrast, this work proposes a simple yet accurate real-time baseline 3D MOT system. We use an off-the-shelf 3D object detector to obtain oriented 3D bounding boxes from the LiDAR point cloud. Then, a combination of 3D Kalman filter and Hungarian algorithm is used for state estimation and data association. Although our baseline system is a straightforward combination of standard methods, we obtain the state-of-the-art results. To evaluate our baseline system, we propose a new 3D MOT extension to the official KITTI 2D MOT evaluation along with two new metrics. Our proposed baseline method for 3D MOT establishes new state-of-the-art performance on 3D MOT for KITTI, improving the 3D MOTA from 72.23 of prior art to 76.47. Surprisingly, by projecting our 3D tracking results to the 2D image plane and compare against published 2D MOT methods, our system places 2nd on the official KITTI leaderboard. Also, our proposed 3D MOT method runs at a rate of 214.7 FPS, 65 times faster than the state-of-the-art 2D MOT system. 1. Clone the github repository.

robot-surgery-segmentation - Wining solution and its improvement for MICCAI 2017 Robotic Instrument Segmentation Sub-Challenge

  •    Jupyter

Here we present our wining solution and its improvement for MICCAI 2017 Robotic Instrument Segmentation Sub-Challenge. In this work, we describe our winning solution for MICCAI 2017 Endoscopic Vision Sub-Challenge: Robotic Instrument Segmentation and demonstrate further improvement over that result. Our approach is originally based on U-Net network architecture that we improved using state-of-the-art semantic segmentation neural networks known as LinkNet and TernausNet. Our results shows superior performance for a binary as well as for multi-class robotic instrument segmentation. We believe that our methods can lay a good foundation for the tracking and pose estimation in the vicinity of surgical scenes.

DeepLabCut - Markerless tracking of user-defined features with deep learning

  •    Python

Welcome to the DeepLabCut repository, a toolbox for markerless tracking of body parts of animals in lab settings performing various tasks, like trail tracking, reaching in mice and various Drosophila behaviors during egg-laying (see Mathis et al. for details). There is, however, nothing specific that makes the toolbox only applicable to these tasks and/or species. The toolbox has also already been successfully applied to rats, humans, various fish species, bacteria, leeches, various robots, and race horses. Please check out for video demonstrations of automated tracking. This work utilizes the feature detectors (ResNet + readout layers) of one of the state-of-the-art algorithms for human pose estimation by Insafutdinov et al., called DeeperCut, which inspired the name for our toolbox (see references below).

AutoGluon - AutoML for Text, Image, and Tabular Data

  •    Python

AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, and tabular data.

Arraymancer - A fast, ergonomic and portable tensor library in Nim with a deep learning focus for CPU, GPU, OpenCL and embedded devices

  •    Nim

Arraymancer is a tensor (N-dimensional array) project in Nim. The main focus is providing a fast and ergonomic CPU, Cuda and OpenCL ndarray library on which to build a scientific computing and in particular a deep learning ecosystem. The library is inspired by Numpy and PyTorch. The library provides ergonomics very similar to Numpy, Julia and Matlab but is fully parallel and significantly faster than those libraries. It is also faster than C-based Torch.

luminoth - Deep Learning toolkit for Computer Vision

  •    Python

Luminoth is an open source toolkit for computer vision. Currently, we support object detection, but we are aiming for much more. It is built in Python, using TensorFlow and Sonnet. Read the full documentation here.

practical-machine-learning-with-python - Master the essential skills needed to recognize and solve complex real-world problems with Machine Learning and Deep Learning by leveraging the highly popular Python Machine Learning Eco-system

  •    Jupyter

"Data is the new oil" is a saying which you must have heard by now along with the huge interest building up around Big Data and Machine Learning in the recent past along with Artificial Intelligence and Deep Learning. Besides this, data scientists have been termed as having "The sexiest job in the 21st Century" which makes it all the more worthwhile to build up some valuable expertise in these areas. Getting started with machine learning in the real world can be overwhelming with the vast amount of resources out there on the web. "Practical Machine Learning with Python" follows a structured and comprehensive three-tiered approach packed with concepts, methodologies, hands-on examples, and code. This book is packed with over 500 pages of useful information which helps its readers master the essential skills needed to recognize and solve complex problems with Machine Learning and Deep Learning by following a data-driven mindset. By using real-world case studies that leverage the popular Python Machine Learning ecosystem, this book is your perfect companion for learning the art and science of Machine Learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute Machine Learning systems and projects successfully.

torch-points3d - Pytorch framework for doing deep learning on point clouds.

  •    Python

This is a framework for running common deep learning models for point cloud analysis tasks against classic benchmark. It heavily relies on Pytorch Geometric and Facebook Hydra. The framework allows lean and yet complex model to be built with minimum effort and great reproducibility. It also provide a high level API to democratize deep learning on pointclouds. See our paper at 3DV for an overview of the framework capacities and benchmarks of state-of-the-art networks.

fastseg - 📸 PyTorch implementation of MobileNetV3 for real-time semantic segmentation, with pretrained weights & state-of-the-art performance

  •    Python

This respository aims to provide accurate real-time semantic segmentation code for mobile devices in PyTorch, with pretrained weights on Cityscapes. This can be used for efficient segmentation on a variety of real-world street images, including datasets like Mapillary Vistas, KITTI, and CamVid. The models are implementations of MobileNetV3 (both large and small variants) with a modified segmentation head based on LR-ASPP. The top model was able to achieve 72.3% mIoU accuracy on Cityscapes val, while running at up to 37.3 FPS on a GPU. Please see below for detailed benchmarks.

deep-head-pose - :fire::fire: Deep Learning Head Pose Estimation using PyTorch.

  •    Python

Hopenet is an accurate and easy to use head pose estimation network. Models have been trained on the 300W-LP dataset and have been tested on real data with good qualitative performance. For details about the method and quantitative results please check the paper.

Accord.NET - Machine learning, Computer vision, Statistics and general scientific computing for .NET

  •    CSharp

The Accord.NET project provides machine learning, statistics, artificial intelligence, computer vision and image processing methods to .NET. It can be used on Microsoft Windows, Xamarin, Unity3D, Windows Store applications, Linux or mobile.

Machine-Learning / Deep-Learning / AI + Web3 -Tutorials

  •    Python

A comprehensive list of Deep Learning / Artificial Intelligence and Machine Learning tutorials - rapidly expanding into areas of AI/Deep Learning / Machine Vision / NLP and industry specific areas such as Climate / Energy, Automotives, Retail, Pharma, Medicine, Healthcare, Policy, Ethics and more.

keras-rl - Deep Reinforcement Learning for Keras.

  •    Python

keras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seamlessly integrates with the deep learning library Keras. Just like Keras, it works with either Theano or TensorFlow, which means that you can train your algorithm efficiently either on CPU or GPU. Furthermore, keras-rl works with OpenAI Gym out of the box. This means that evaluating and playing around with different algorithms is easy. Of course you can extend keras-rl according to your own needs. You can use built-in Keras callbacks and metrics or define your own. Even more so, it is easy to implement your own environments and even algorithms by simply extending some simple abstract classes. In a nutshell: keras-rl makes it really easy to run state-of-the-art deep reinforcement learning algorithms, uses Keras and thus Theano or TensorFlow and was built with OpenAI Gym in mind.

Objectron - Objectron is a dataset of short, object-centric video clips

  •    Jupyter

Objectron is a dataset of short object centric video clips with pose annotations. The Objectron dataset is a collection of short, object-centric video clips, which are accompanied by AR session metadata that includes camera poses, sparse point-clouds and characterization of the planar surfaces in the surrounding environment. In each video, the camera moves around the object, capturing it from different angles. The data also contain manually annotated 3D bounding boxes for each object, which describe the object’s position, orientation, and dimensions. The dataset consists of 15K annotated video clips supplemented with over 4M annotated images in the following categories: bikes, books, bottles, cameras, cereal boxes, chairs, cups, laptops, and shoes. In addition, to ensure geo-diversity, our dataset is collected from 10 countries across five continents. Along with the dataset, we are also sharing a 3D object detection solution for four categories of objects — shoes, chairs, mugs, and cameras. These models are trained using this dataset, and are released in MediaPipe, Google's open source framework for cross-platform customizable ML solutions for live and streaming media.

pytorch-dense-correspondence - Code for "Dense Object Nets: Learning Dense Visual Object Descriptors By and For Robotic Manipulation"

  •    Python

Abstract: What is the right object representation for manipulation? We would like robots to visually perceive scenes and learn an understanding of the objects in them that (i) is task-agnostic and can be used as a building block for a variety of manipulation tasks, (ii) is generally applicable to both rigid and non-rigid objects, (iii) takes advantage of the strong priors provided by 3D vision, and (iv) is entirely learned from self-supervision. This is hard to achieve with previous methods: much recent work in grasping does not extend to grasping specific objects or other tasks, whereas task-specific learning may require many trials to generalize well across object configurations or other tasks. In this paper we present Dense Object Nets, which build on recent developments in self-supervised dense descriptor learning, as a consistent object representation for visual understanding and manipulation. We demonstrate they can be trained quickly (approximately 20 minutes) for a wide variety of previously unseen and potentially non-rigid objects. We additionally present novel contributions to enable multi-object descriptor learning, and show that by modifying our training procedure, we can either acquire descriptors which generalize across classes of objects, or descriptors that are distinct for each object instance. Finally, we demonstrate the novel application of learned dense descriptors to robotic manipulation. We demonstrate grasping of specific points on an object across potentially deformed object configurations, and demonstrate using class general descriptors to transfer specific grasps across objects in a class. To prevent the repo from growing in size, recommend always "restart and clear outputs" before committing any Jupyter notebooks. If you'd like to save what your notebook looks like, you can always "download as .html", which is a great way to snapshot the state of that notebook and share.

pysot - SenseTime Research platform for single object tracking, implementing algorithms like SiamRPN and SiamMask

  •    Python

PySOT is a software system designed by SenseTime Video Intelligence Research team. It implements state-of-the-art single object tracking algorithms, including SiamRPN and SiamMask. It is written in Python and powered by the PyTorch deep learning framework. This project also contains a Python port of toolkit for evaluating trackers. PySOT has enabled research projects, including: SiamRPN, DaSiamRPN, SiamRPN++, and SiamMask.

We have large collection of open source products. Follow the tags from Tag Cloud >>

Open source products are scattered around the web. Please provide information about the open source projects you own / you use. Add Projects.