pytorch-fid - Compute FID scores with PyTorch.

  •        322

This is a port of the official implementation of Fréchet Inception Distance to PyTorch. See https://github.com/bioinf-jku/TTUR for the original implementation using Tensorflow. FID is a measure of similarity between two datasets of images. It was shown to correlate well with human judgement of visual quality and is most often used to evaluate the quality of samples of Generative Adversarial Networks. FID is calculated by computing the Fréchet distance between two Gaussians fitted to feature representations of the Inception network.

https://github.com/mseitzer/pytorch-fid

Tags
Implementation
License
Platform

   




Related Projects

stylegan2-ada-pytorch - StyleGAN2-ADA - Official PyTorch implementation

  •    Python

Abstract: Training generative adversarial networks (GAN) using too little data typically leads to discriminator overfitting, causing training to diverge. We propose an adaptive discriminator augmentation mechanism that significantly stabilizes training in limited data regimes. The approach does not require changes to loss functions or network architectures, and is applicable both when training from scratch and when fine-tuning an existing GAN on another dataset. We demonstrate, on several datasets, that good results are now possible using only a few thousand training images, often matching StyleGAN2 results with an order of magnitude fewer images. We expect this to open up new application domains for GANs. We also find that the widely used CIFAR-10 is, in fact, a limited data benchmark, and improve the record FID from 5.59 to 2.42. This repository is a faithful reimplementation of StyleGAN2-ADA in PyTorch, focusing on correctness, performance, and compatibility.

stylegan2-ada - StyleGAN2 with adaptive discriminator augmentation (ADA) - Official TensorFlow implementation

  •    Python

Abstract: Training generative adversarial networks (GAN) using too little data typically leads to discriminator overfitting, causing training to diverge. We propose an adaptive discriminator augmentation mechanism that significantly stabilizes training in limited data regimes. The approach does not require changes to loss functions or network architectures, and is applicable both when training from scratch and when fine-tuning an existing GAN on another dataset. We demonstrate, on several datasets, that good results are now possible using only a few thousand training images, often matching StyleGAN2 results with an order of magnitude fewer images. We expect this to open up new application domains for GANs. We also find that the widely used CIFAR-10 is, in fact, a limited data benchmark, and improve the record FID from 5.59 to 2.42. The Official PyTorch version is now available and supersedes the TensorFlow version. See the full list of versions here.

All-About-the-GAN - All About the GANs(Generative Adversarial Networks) - Summarized lists for GAN

  •    Python

The purpose of this repository is providing the curated list of the state-of-the-art works on the field of Generative Adversarial Networks since their introduction in 2014. You can also check out the same data in a tabular format with functionality to filter by year or do a quick search by title here.

stylegan3 - Official PyTorch implementation of StyleGAN3

  •    Python

Abstract: We observe that despite their hierarchical convolutional nature, the synthesis process of typical generative adversarial networks depends on absolute pixel coordinates in an unhealthy manner. This manifests itself as, e.g., detail appearing to be glued to image coordinates instead of the surfaces of depicted objects. We trace the root cause to careless signal processing that causes aliasing in the generator network. Interpreting all signals in the network as continuous, we derive generally applicable, small architectural changes that guarantee that unwanted information cannot leak into the hierarchical synthesis process. The resulting networks match the FID of StyleGAN2 but differ dramatically in their internal representations, and they are fully equivariant to translation and rotation even at subpixel scales. Our results pave the way for generative models better suited for video and animation. While new generator approaches enable new media synthesis capabilities, they may also present a new challenge for AI forensics algorithms for detection and attribution of synthetic media. In collaboration with digital forensic researchers participating in DARPA's SemaFor program, we curated a synthetic image dataset that allowed the researchers to test and validate the performance of their image detectors in advance of the public release. Please see here for more details.

T2F - T2F: text to face generation using Deep Learning

  •    Python

Text-to-Face generation using Deep Learning. This project combines two of the recent architectures StackGAN and ProGAN for synthesizing faces from textual descriptions. The project uses Face2Text dataset which contains 400 facial images and textual captions for each of them. The data can be obtained by contacting either the RIVAL group or the authors of the aforementioned paper. The code is present in the implementation/ subdirectory. The implementation is done using the PyTorch framework. So, for running this code, please install PyTorch version 0.4.0 before continuing.


DiscoGAN-pytorch - PyTorch implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

  •    Jupyter

PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. * All samples in README.md are genearted by neural network except the first image for each row. * Network structure is slightly diffferent (here) from the author's code.

iGAN - Interactive Image Generation via Generative Adversarial Networks

  •    Python

[Project] [Youtube] [Paper] A research prototype developed by UC Berkeley and Adobe CTL. Latest development: [pix2pix]: Torch implementation for learning a mapping from input images to output images. [CycleGAN]: Torch implementation for learning an image-to-image translation (i.e. pix2pix) without input-output pairs. [pytorch-CycleGAN-and-pix2pix]: PyTorch implementation for both unpaired and paired image-to-image translation.

chainer-gan-lib - Chainer implementation of recent GAN variants

  •    Python

This repository collects chainer implementation of state-of-the-art GAN algorithms. These codes are evaluated with the inception score on Cifar-10 dataset. Note that our codes are not faithful re-implementation of the original paper. This implementation has been tested with the following versions.

PyTorch-GAN - PyTorch implementations of Generative Adversarial Networks.

  •    Python

Collection of PyTorch implementations of Generative Adversarial Network varieties presented in research papers. Model architectures will not always mirror the ones proposed in the papers, but I have chosen to focus on getting the core ideas covered instead of getting every layer configuration right. Contributions and suggestions of GANs to implement are very welcomed. Synthesizing high resolution photorealistic images has been a long-standing challenge in machine learning. In this paper we introduce new methods for the improved training of generative adversarial networks (GANs) for image synthesis. We construct a variant of GANs employing label conditioning that results in 128x128 resolution image samples exhibiting global coherence. We expand on previous work for image quality assessment to provide two new analyses for assessing the discriminability and diversity of samples from class-conditional image synthesis models. These analyses demonstrate that high resolution samples provide class information not present in low resolution samples. Across 1000 ImageNet classes, 128x128 samples are more than twice as discriminable as artificially resized 32x32 samples. In addition, 84.7% of the classes have samples exhibiting diversity comparable to real ImageNet data.

pytorch-CycleGAN-and-pix2pix - Image-to-image translation in PyTorch (e

  •    Python

This is our PyTorch implementation for both unpaired and paired image-to-image translation. It is still under active development. The code was written by Jun-Yan Zhu and Taesung Park, and supported by Tongzhou Wang.

PyTorch-Tutorial - Build your neural network easy and fast

  •    Jupyter

In these tutorials for pyTorch, we will build our first Neural Network and try to build some advanced Neural Network architectures developed recent years. Thanks for liufuyang's notebook files which is a great contribution to this tutorial.

pix2pixHD - Synthesizing and manipulating 2048x1024 images with conditional GANs

  •    Python

Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic image-to-image translation. It can be used for turning semantic label maps into photo-realistic images or synthesizing portraits from face label maps. High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs Ting-Chun Wang1, Ming-Yu Liu1, Jun-Yan Zhu2, Andrew Tao1, Jan Kautz1, Bryan Catanzaro1 1NVIDIA Corporation, 2UC Berkeley In arxiv, 2017.

CycleGAN - Software that can generate photos from paintings, turn horses into zebras, perform style transfer, and more

  •    Lua

This package includes CycleGAN, pix2pix, as well as other methods like BiGAN/ALI and Apple's paper S+U learning. The code was written by Jun-Yan Zhu and Taesung Park. Note: Please check out PyTorch implementation for CycleGAN and pix2pix. The PyTorch version is under active development and can produce results comparable or better than this Torch version.

pytorch-pretrained-BigGAN - 🦋A PyTorch implementation of BigGAN with pretrained weights and conversion scripts

  •    Python

An op-for-op PyTorch reimplementation of DeepMind's BigGAN model with the pre-trained weights from DeepMind. This repository contains an op-for-op PyTorch reimplementation of DeepMind's BigGAN that was released with the paper Large Scale GAN Training for High Fidelity Natural Image Synthesis by Andrew Brock, Jeff Donahue and Karen Simonyan.

gan-playground - GAN Playground - Experiment with Generative Adversarial Nets in your browser

  •    TypeScript

GAN Playground lets you play around with Generative Adversarial Networks right in your browser. Currently, it contains three built-in datasets: MNIST, Fashion MNIST, and CIFAR-10. GAN Playground provides you the ability to set your models' hyperparameters and build up your discriminator and generator layer-by-layer. You can observe the network learn in real time as the generator produces more and more realistic images, or more likely, gets stuck in failure modes such as mode collapse.

RelativisticGAN - Code for replication of the paper "The relativistic discriminator: a key element missing from standard GAN"

  •    Python

Code to replicate all analyses from the paper The relativistic discriminator: a key element missing from standard GAN Discussion at https://ajolicoeur.wordpress.com/RelativisticGAN. If you just want to generate pictures and you do not care about the Fréchet Inception Distance (FID), you do not need to download Tensorflow.

StarGAN - Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

  •    Python

PyTorch implementation of StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation. StarGAN can flexibly translate an input image to any desired target domain using only a single generator and a discriminator.

AdaptSegNet - Learning to Adapt Structured Output Space for Semantic Segmentation, CVPR 2018 (spotlight)

  •    Python

Pytorch implementation of our method for adapting semantic segmentation from the synthetic dataset (source domain) to the real dataset (target domain). Based on this implementation, our result is ranked 3rd in the VisDA Challenge. Learning to Adapt Structured Output Space for Semantic Segmentation Yi-Hsuan Tsai*, Wei-Chih Hung*, Samuel Schulter, Kihyuk Sohn, Ming-Hsuan Yang and Manmohan Chandraker IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018 (spotlight) (* indicates equal contribution).

Keras-GAN - Keras implementations of Generative Adversarial Networks.

  •    Python

Collection of Keras implementations of Generative Adversarial Networks (GANs) suggested in research papers. These models are in some cases simplified versions of the ones ultimately described in the papers, but I have chosen to focus on getting the core ideas covered instead of getting every layer configuration right. Contributions and suggestions of GAN varieties to implement are very welcomed. Implementation of Auxiliary Classifier Generative Adversarial Network.






We have large collection of open source products. Follow the tags from Tag Cloud >>


Open source products are scattered around the web. Please provide information about the open source projects you own / you use. Add Projects.