DeepSpeech - A TensorFlow implementation of Baidu's DeepSpeech architecture

  •        218

Project DeepSpeech is an open source Speech-To-Text engine. It uses a model trained by machine learning techniques, based on Baidu's Deep Speech research paper. Project DeepSpeech uses Google's TensorFlow project to make the implementation easier.

https://github.com/mozilla/DeepSpeech

Tags
Implementation
License
Platform

   




Related Projects

tensorflow-speech-recognition - 🎙Speech recognition using the tensorflow deep learning framework, sequence-to-sequence neural networks


Speech recognition using google's tensorflow deep learning framework, sequence-to-sequence neural networks. Replaces caffe-speech-recognition, see there for some background.

Kur - Descriptive Deep Learning


Kur is a system for quickly building and applying state-of-the-art deep learning models to new and exciting problems. Kur was designed to appeal to the entire machine learning community, from novices to veterans. It uses specification files that are simple to read and author, meaning that you can get started building sophisticated models without ever needing to code. Even so, Kur exposes a friendly and extensible API to support advanced deep learning architectures or workflows.

deep-learning-book - Repository for "Introduction to Artificial Neural Networks and Deep Learning: A Practical Guide with Applications in Python"


Repository for the book Introduction to Artificial Neural Networks and Deep Learning: A Practical Guide with Applications in Python. Deep learning is not just the talk of the town among tech folks. Deep learning allows us to tackle complex problems, training artificial neural networks to recognize complex patterns for image and speech recognition. In this book, we'll continue where we left off in Python Machine Learning and implement deep learning algorithms in PyTorch.

OpenSeq2Seq - Toolkit for efficient experimentation with various sequence-to-sequence models


This is a research project, not an official NVIDIA product. OpenSeq2Seq main goal is to allow researchers to most effectively explore various sequence-to-sequence models. The efficiency is achieved by fully supporting distributed and mixed-precision training. OpenSeq2Seq is built using TensorFlow and provides all the necessary building blocks for training encoder-decoder models for neural machine translation and automatic speech recognition. We plan to extend it with other modalities in the future.

merlin - This is now the official location of the Merlin project.


This repository contains the Neural Network (NN) based Speech Synthesis System developed at the Centre for Speech Technology Research (CSTR), University of Edinburgh.Merlin is a toolkit for building Deep Neural Network models for statistical parametric speech synthesis. It must be used in combination with a front-end text processor (e.g., Festival) and a vocoder (e.g., STRAIGHT or WORLD).


t81_558_deep_learning - Washington University (in St


Deep learning is a group of exciting new technologies for neural networks. Through a combination of advanced training techniques and neural network architectural components, it is now possible to create neural networks of much greater complexity. Deep learning allows a neural network to learn hierarchies of information in a way that is like the function of the human brain. This course will introduce the student to computer vision with Convolution Neural Networks (CNN), time series analysis with Long Short-Term Memory (LSTM), classic neural network structures and application to computer security. High Performance Computing (HPC) aspects will demonstrate how deep learning can be leveraged both on graphical processing units (GPUs), as well as grids. Focus is primarily upon the application of deep learning to problems, with some introduction mathematical foundations. Students will use the Python programming language to implement deep learning using Google TensorFlow and Keras. It is not necessary to know Python prior to this course; however, familiarity of at least one programming language is assumed. This course will be delivered in a hybrid format that includes both classroom and online instruction. This syllabus presents the expected class schedule, due dates, and reading assignments. Download current syllabus.

node-tensorflow - Node.js + TensorFlow


TensorFlow is Google's machine learning runtime. It is implemented as C++ runtime, along with Python framework to support building a variety of models, especially neural networks for deep learning. It is interesting to be able to use TensorFlow in a node.js application using just JavaScript (or TypeScript if that's your preference). However, the Python functionality is vast (several ops, estimator implementations etc.) and continually expanding. Instead, it would be more practical to consider building Graphs and training models in Python, and then consuming those for runtime use-cases (like prediction or inference) in a pure node.js and Python-free deployment. This is what this node module enables.

emotion-recognition-neural-networks - Emotion recognition using DNN with tensorflow


This repository is the out project about mood recognition using convolutional neural network for the course Seminar Neural Networks at TU Delft. We use the FER-2013 Faces Database, a set of 28,709 pictures of people displaying 7 emotional expressions (angry, disgusted, fearful, happy, sad, surprised and neutral).

keras - Deep Learning library for Python. Runs on TensorFlow, Theano, or CNTK.


Keras is a high-level neural networks API, written in Python and capable of running on top of TensorFlow, CNTK, or Theano. It was developed with a focus on enabling fast experimentation. Being able to go from idea to result with the least possible delay is key to doing good research.

NCRFpp - NCRF++, an Open-source Neural Sequence Labeling Toolkit


Sequence labeling models are quite popular in many NLP tasks, such as Named Entity Recognition (NER), part-of-speech (POS) tagging and word segmentation. State-of-the-art sequence labeling models mostly utilize the CRF structure with input word features. LSTM (or bidirectional LSTM) is a popular deep learning based feature extractor in sequence labeling task. And CNN can also be used due to faster computation. Besides, features within word are also useful to represent word, which can be captured by character LSTM or character CNN structure or human-defined neural features. NCRF++ is a PyTorch based framework with flexiable choices of input features and output structures. The design of neural sequence labeling models with NCRF++ is fully configurable through a configuration file, which does not require any code work. NCRF++ is a neural version of CRF++, which is a famous statistical CRF framework.

saliency - TensorFlow implementation for SmoothGrad, Grad-CAM, Guided backprop, Integrated Gradients and other saliency techniques


If the sign of the value given by the saliency mask is not important, then use VisualizeImageGrayscale, otherwise use VisualizeImageDiverging. See the SmoothGrad paper for more details on which visualization method to use. This example iPython notebook shows these techniques is a good starting place.

Bender - Easily craft fast Neural Networks on iOS! Use TensorFlow models. Metal under the hood.


Bender is an abstraction layer over MetalPerformanceShaders useful for working with neural networks. Bender is an abstraction layer over MetalPerformanceShaders which is used to work with neural networks. It is of growing interest in the AI environment to execute neural networks on mobile devices even if the training process has been done previously. We want to make it easier for everyone to execute pretrained networks on iOS.

probability - Probabilistic reasoning and statistical analysis in TensorFlow


TensorFlow Probability is a library for probabilistic reasoning and statistical analysis in TensorFlow. As part of the TensorFlow ecosystem, TensorFlow Probability provides integration of probabilistic methods with deep networks, gradient-based inference via automatic differentiation, and scalability to large datasets and models via hardware acceleration (e.g., GPUs) and distributed computation. Our probabilistic machine learning tools are structured as follows.

keras-rl - Deep Reinforcement Learning for Keras.


keras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seamlessly integrates with the deep learning library Keras. Just like Keras, it works with either Theano or TensorFlow, which means that you can train your algorithm efficiently either on CPU or GPU. Furthermore, keras-rl works with OpenAI Gym out of the box. This means that evaluating and playing around with different algorithms is easy. Of course you can extend keras-rl according to your own needs. You can use built-in Keras callbacks and metrics or define your own. Even more so, it is easy to implement your own environments and even algorithms by simply extending some simple abstract classes. In a nutshell: keras-rl makes it really easy to run state-of-the-art deep reinforcement learning algorithms, uses Keras and thus Theano or TensorFlow and was built with OpenAI Gym in mind.

neuralmonkey - An open-source tool for sequence learning in NLP built on TensorFlow.


The Neural Monkey package provides a higher level abstraction for sequential neural network models, most prominently in Natural Language Processing (NLP). It is built on TensorFlow. It can be used for fast prototyping of sequential models in NLP which can be used e.g. for neural machine translation or sentence classification. The higher-level API brings together a collection of standard building blocks (RNN encoder and decoder, multi-layer perceptron) and a simple way of adding new building blocks implemented directly in TensorFlow.

tfjs-core - WebGL-accelerated ML // linear algebra // automatic differentiation for JavaScript.


NOTE: Building on the momentum of deeplearn.js, we have joined the TensorFlow family and we are starting a new ecosystem of libraries and tools for Machine Learning in Javascript, called TensorFlow.js. This repo moved from PAIR-code/deeplearnjs to tensorflow/tfjs-core. A part of the TensorFlow.js ecosystem, this repo hosts @tensorflow/tfjs-core, the TensorFlow.js Core API, which provides low-level, hardware-accelerated linear algebra operations and an eager API for automatic differentiation.