DeepSpeech - A TensorFlow implementation of Baidu's DeepSpeech architecture

  •        472

Project DeepSpeech is an open source Speech-To-Text engine. It uses a model trained by machine learning techniques, based on Baidu's Deep Speech research paper. Project DeepSpeech uses Google's TensorFlow project to make the implementation easier.



Related Projects

tensorflow-speech-recognition - 🎙Speech recognition using the tensorflow deep learning framework, sequence-to-sequence neural networks

  •    Python

Speech recognition using google's tensorflow deep learning framework, sequence-to-sequence neural networks. Replaces caffe-speech-recognition, see there for some background.

Kur - Descriptive Deep Learning

  •    Python

Kur is a system for quickly building and applying state-of-the-art deep learning models to new and exciting problems. Kur was designed to appeal to the entire machine learning community, from novices to veterans. It uses specification files that are simple to read and author, meaning that you can get started building sophisticated models without ever needing to code. Even so, Kur exposes a friendly and extensible API to support advanced deep learning architectures or workflows.

deep-learning-book - Repository for "Introduction to Artificial Neural Networks and Deep Learning: A Practical Guide with Applications in Python"

  •    Jupyter

Repository for the book Introduction to Artificial Neural Networks and Deep Learning: A Practical Guide with Applications in Python. Deep learning is not just the talk of the town among tech folks. Deep learning allows us to tackle complex problems, training artificial neural networks to recognize complex patterns for image and speech recognition. In this book, we'll continue where we left off in Python Machine Learning and implement deep learning algorithms in PyTorch.

delta - DELTA is a deep learning based natural language and speech processing platform.

  •    Python

DELTA is a deep learning based end-to-end natural language and speech processing platform. DELTA aims to provide easy and fast experiences for using, deploying, and developing natural language processing and speech models for both academia and industry use cases. DELTA is mainly implemented using TensorFlow and Python 3. For details of DELTA, please refer to this paper.

lectures - Oxford Deep NLP 2017 course


This repository contains the lecture slides and course description for the Deep Natural Language Processing course offered in Hilary Term 2017 at the University of Oxford. This is an applied course focussing on recent advances in analysing and generating speech and text using recurrent neural networks. We introduce the mathematical definitions of the relevant machine learning models and derive their associated optimisation algorithms. The course covers a range of applications of neural networks in NLP including analysing latent dimensions in text, transcribing speech to text, translating between languages, and answering questions. These topics are organised into three high level themes forming a progression from understanding the use of neural networks for sequential language modelling, to understanding their use as conditional language models for transduction tasks, and finally to approaches employing these techniques in combination with other mechanisms for advanced applications. Throughout the course the practical implementation of such models on CPU and GPU hardware is also discussed.

stt-benchmark - speech to text benchmark framework

  •    Python

This is a minimalist and extensible framework for benchmarking different speech-to-text engines. It has been developed and tested on Ubuntu 18.04 with Python3.6. This framework has been developed by Picovoice as part of the project Cheetah. Cheetah is Picovoice's speech-to-text engine specifically designed for IoT applications. Deep learning has been the main driver in recent improvements in speech recognition. But due to stringent compute/storage limitations of IoT platforms it is most beneficial to the cloud-based engines. Picovoice's proprietary deep learning technology enables transferring these improvements to IoT platforms with much lower CPU/memory footprint. The goal is to be able to run Cheetah on any platform with a C Compiler and a few MB of memory.

OpenSeq2Seq - Toolkit for efficient experimentation with various sequence-to-sequence models

  •    Python

This is a research project, not an official NVIDIA product. OpenSeq2Seq main goal is to allow researchers to most effectively explore various sequence-to-sequence models. The efficiency is achieved by fully supporting distributed and mixed-precision training. OpenSeq2Seq is built using TensorFlow and provides all the necessary building blocks for training encoder-decoder models for neural machine translation and automatic speech recognition. We plan to extend it with other modalities in the future.

tensorflow-image-detection - A generic image detection program that uses Google's Machine Learning library, Tensorflow and a pre-trained Deep Learning Convolutional Neural Network model called Inception

  •    Python

A generic image detection program that uses Google's Machine Learning library, Tensorflow and a pre-trained Deep Learning Convolutional Neural Network model called Inception. This model has been pre-trained for the ImageNet Large Visual Recognition Challenge using the data from 2012, and it can differentiate between 1,000 different classes, like Dalmatian, dishwasher etc. The program applies Transfer Learning to this existing model and re-trains it to classify a new set of images.

LSTM-Human-Activity-Recognition - Human Activity Recognition example using TensorFlow on smartphone sensors dataset and an LSTM RNN (Deep Learning algo)

  •    Jupyter

Compared to a classical approach, using a Recurrent Neural Networks (RNN) with Long Short-Term Memory cells (LSTMs) require no or almost no feature engineering. Data can be fed directly into the neural network who acts like a black box, modeling the problem correctly. Other research on the activity recognition dataset can use a big amount of feature engineering, which is rather a signal processing approach combined with classical data science techniques. The approach here is rather very simple in terms of how much was the data preprocessed. Let's use Google's neat Deep Learning library, TensorFlow, demonstrating the usage of an LSTM, a type of Artificial Neural Network that can process sequential data / time series.

merlin - This is now the official location of the Merlin project.

  •    Python

This repository contains the Neural Network (NN) based Speech Synthesis System developed at the Centre for Speech Technology Research (CSTR), University of Edinburgh.Merlin is a toolkit for building Deep Neural Network models for statistical parametric speech synthesis. It must be used in combination with a front-end text processor (e.g., Festival) and a vocoder (e.g., STRAIGHT or WORLD).

practical-machine-learning-with-python - Master the essential skills needed to recognize and solve complex real-world problems with Machine Learning and Deep Learning by leveraging the highly popular Python Machine Learning Eco-system

  •    Jupyter

"Data is the new oil" is a saying which you must have heard by now along with the huge interest building up around Big Data and Machine Learning in the recent past along with Artificial Intelligence and Deep Learning. Besides this, data scientists have been termed as having "The sexiest job in the 21st Century" which makes it all the more worthwhile to build up some valuable expertise in these areas. Getting started with machine learning in the real world can be overwhelming with the vast amount of resources out there on the web. "Practical Machine Learning with Python" follows a structured and comprehensive three-tiered approach packed with concepts, methodologies, hands-on examples, and code. This book is packed with over 500 pages of useful information which helps its readers master the essential skills needed to recognize and solve complex problems with Machine Learning and Deep Learning by following a data-driven mindset. By using real-world case studies that leverage the popular Python Machine Learning ecosystem, this book is your perfect companion for learning the art and science of Machine Learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute Machine Learning systems and projects successfully.

lip-reading-deeplearning - :unlock: Lip Reading - Cross Audio-Visual Recognition using 3D Architectures

  •    Python

The input pipeline must be prepared by the users. This code is aimed to provide the implementation for Coupled 3D Convolutional Neural Networks for audio-visual matching. Lip-reading can be a specific application for this work. Audio-visual recognition (AVR) has been considered as a solution for speech recognition tasks when the audio is corrupted, as well as a visual recognition method used for speaker verification in multi-speaker scenarios. The approach of AVR systems is to leverage the extracted information from one modality to improve the recognition ability of the other modality by complementing the missing information.

awesome-deep-learning-music - List of articles related to deep learning applied to music

  •    TeX

By Yann Bayle (Website, GitHub) from LaBRI (Website, Twitter), Univ. Bordeaux (Website, Twitter), CNRS (Website, Twitter) and SCRIME (Website). The role of this curated list is to gather scientific articles, thesis and reports that use deep learning approaches applied to music. The list is currently under construction but feel free to contribute to the missing fields and to add other resources! To do so, please refer to the How To Contribute section. The resources provided here come from my review of the state-of-the-art for my PhD Thesis for which an article is being written. There are already surveys on deep learning for music generation, speech separation and speaker identification. However, these surveys do not cover music information retrieval tasks that are included in this repository.

t81_558_deep_learning - Washington University (in St

  •    Jupyter

Deep learning is a group of exciting new technologies for neural networks. Through a combination of advanced training techniques and neural network architectural components, it is now possible to create neural networks of much greater complexity. Deep learning allows a neural network to learn hierarchies of information in a way that is like the function of the human brain. This course will introduce the student to computer vision with Convolution Neural Networks (CNN), time series analysis with Long Short-Term Memory (LSTM), classic neural network structures and application to computer security. High Performance Computing (HPC) aspects will demonstrate how deep learning can be leveraged both on graphical processing units (GPUs), as well as grids. Focus is primarily upon the application of deep learning to problems, with some introduction mathematical foundations. Students will use the Python programming language to implement deep learning using Google TensorFlow and Keras. It is not necessary to know Python prior to this course; however, familiarity of at least one programming language is assumed. This course will be delivered in a hybrid format that includes both classroom and online instruction. This syllabus presents the expected class schedule, due dates, and reading assignments. Download current syllabus.

espnet - End-to-End Speech Processing Toolkit

  •    Shell

ESPnet is an end-to-end speech processing toolkit, mainly focuses on end-to-end speech recognition, and end-to-end text-to-speech. ESPnet uses chainer and pytorch as a main deep learning engine, and also follows Kaldi style data processing, feature extraction/format, and recipes to provide a complete setup for speech recognition and other speech processing experiments. To use cuda (and cudnn), make sure to set paths in your .bashrc or .bash_profile appropriately.

3D-convolutional-speaker-recognition - :speaker: Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

  •    Python

This repository contains the code release for our paper titled as "Text-Independent Speaker Verification Using 3D Convolutional Neural Networks". The link to the paper is provided as well. The code has been developed using TensorFlow. The input pipeline must be prepared by the users. This code is aimed to provide the implementation for Speaker Verification (SR) by using 3D convolutional neural networks following the SR protocol.

easy-tensorflow - Simple and comprehensive tutorials in TensorFlow

  •    Python

The goal of this repository is to provide comprehensive tutorials for TensorFlow while maintaining the simplicity of the code. Each tutorial includes a detailed explanation (written in .ipynb) format, as well as the source code (in .py format).

node-tensorflow - Node.js + TensorFlow

  •    Javascript

TensorFlow is Google's machine learning runtime. It is implemented as C++ runtime, along with Python framework to support building a variety of models, especially neural networks for deep learning. It is interesting to be able to use TensorFlow in a node.js application using just JavaScript (or TypeScript if that's your preference). However, the Python functionality is vast (several ops, estimator implementations etc.) and continually expanding. Instead, it would be more practical to consider building Graphs and training models in Python, and then consuming those for runtime use-cases (like prediction or inference) in a pure node.js and Python-free deployment. This is what this node module enables.