- 57

In these tutorials, we will build our first Neural Network and try to build some advanced Neural Network architectures developed recent years. All methods mentioned below have their video and text tutorial in Chinese. Visit θ«η¦ Python for more.

https://morvanzhou.github.io/tutorials/machine-learning/tensorflow/https://github.com/MorvanZhou/Tensorflow-Tutorial

Tags | tensorflow tensorflow-tutorials gan generative-adversarial-network rnn cnn classification regression autoencoder deep-q-network dqn machine-learning tutorial dropout neural-network |

Implementation | Python |

License | Public |

Platform | Windows Linux |

In these tutorials for pyTorch, we will build our first Neural Network and try to build some advanced Neural Network architectures developed recent years. Thanks for liufuyang's notebook files which is a great contribution to this tutorial.

neural-network pytorch-tutorial batch-normalization cnn rnn autoencoder pytorch regression classification batch tutorial dropout dqn reinforcement-learning gan generative-adversarial-network machine-learningSome examples require MNIST dataset for training and testing. Don't worry, this dataset will automatically be downloaded when running examples (with input_data.py). MNIST is a database of handwritten digits, for a quick description of that dataset, you can check this notebook.

recurrent-neural-networks convolutional-neural-networks deep-learning-tutorial tensorflow tensorlayer keras deep-reinforcement-learning tensorflow-tutorials deep-learning machine-learning notebook autoencoder multi-layer-perceptron reinforcement-learning tflearn neural-networks neural-network neural-machine-translation nlp cnnν μνλ‘μ°λ₯Ό κΈ°μ΄λΆν° μμ©κΉμ§ λ¨κ³λ³λ‘ μ°μ΅ν μ μλ μμ€ μ½λλ₯Ό μ κ³΅ν©λλ€. ν μνλ‘μ° κ³΅μ μ¬μ΄νΈμμ μ κ³΅νλ μλ΄μμ λλΆλΆμ λ΄μ©μ λ€λ£¨κ³ μμΌλ©°, κ³΅μ μ¬μ΄νΈμμ μ κ³΅νλ μμ€ μ½λλ³΄λ€λ ν¨μ¬ κ°λ΅νκ² μμ±νμμΌλ―λ‘ μ½κ² κ°λ μ μ΅ν μ μμ κ² μ λλ€. λν, λͺ¨λ μ£Όμμ νκΈλ‘(!) λμ΄ μμ΅λλ€.

neural-network tensorflow mnist autoencoder rnn deep-learning tutorial chatbot seq2seq dqn word2vec cnn gan inceptionTensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides a large collection of customizable neural layers / functions that are key to build real-world AI applications. TensorLayer is awarded the 2017 Best Open Source Software by the ACM Multimedia Society. Simplicity : TensorLayer lifts the low-level dataflow interface of TensorFlow to high-level layers / models. It is very easy to learn through the rich example codes contributed by a wide community.

tensorlayer deep-learning tensorflow machine-learning data-science neural-network reinforcement-learning artificial-intelligence gan a3c tensorflow-tutorials dqn object-detection chatbot tensorflow-tutorial imagenet googleThis chapter intends to introduce the main objects and concepts in TensorFlow. We also introduce how to access the data for the rest of the book and provide additional resources for learning about TensorFlow. After we have established the basic objects and methods in TensorFlow, we now want to establish the components that make up TensorFlow algorithms. We start by introducing computational graphs, and then move to loss functions and back propagation. We end with creating a simple classifier and then show an example of evaluating regression and classification algorithms.

tensorflow tensorflow-cookbook linear-regression neural-network tensorflow-algorithms rnn cnn svm nlp packtpub machine-learning tensorboard classification regression kmeans-clustering genetic-algorithm odeThe purpose of this repository is providing the curated list of the state-of-the-art works on the field of Generative Adversarial Networks since their introduction in 2014. You can also check out the same data in a tabular format with functionality to filter by year or do a quick search by title here.

gan adversarial-networks arxiv neural-network unsupervised-learning adversarial-nets image-synthesis deep-learning generative-adversarial-network medical-imaging tensorflow pytorch paper cgan ct-denoising segmentation medical-image-synthesis reconstruction detection classificationIn these tutorials for reinforcement learning, it covers from the basic RL algorithms to advanced algorithms developed recent years. If you speak Chinese, visit θ«η¦ Python or my Youtube channel for more.

reinforcement-learning tutorial q-learning sarsa sarsa-lambda deep-q-network a3c ddpg policy-gradient dqn double-dqn prioritized-replay dueling-dqn deep-deterministic-policy-gradient asynchronous-advantage-actor-critic actor-critic tensorflow-tutorials proximal-policy-optimization ppo machine-learningCompared to a classical approach, using a Recurrent Neural Networks (RNN) with Long Short-Term Memory cells (LSTMs) require no or almost no feature engineering. Data can be fed directly into the neural network who acts like a black box, modeling the problem correctly. Other research on the activity recognition dataset can use a big amount of feature engineering, which is rather a signal processing approach combined with classical data science techniques. The approach here is rather very simple in terms of how much was the data preprocessed. Let's use Google's neat Deep Learning library, TensorFlow, demonstrating the usage of an LSTM, a type of Artificial Neural Network that can process sequential data / time series.

machine-learning deep-learning lstm human-activity-recognition neural-network rnn recurrent-neural-networks tensorflow activity-recognitionA composable GAN API and CLI. Built for developers, researchers, and artists. HyperGAN is currently in open beta.

gan supervised-learning unsupervised-learning learning generative-adversarial-network generative-model artificial-intelligence machine-learning machine-learning-api tensorflow classification generator discriminatorReinforcement Learning with Python will help you to master basic reinforcement learning algorithms to the advanced deep reinforcement learning algorithms. The book starts with an introduction to Reinforcement Learning followed by OpenAI and Tensorflow. You will then explore various RL algorithms and concepts such as the Markov Decision Processes, Monte-Carlo methods, and dynamic programming, including value and policy iteration. This example-rich guide will introduce you to deep learning, covering various deep learning algorithms. You will then explore deep reinforcement learning in depth, which is a combination of deep learning and reinforcement learning. You will master various deep reinforcement learning algorithms such as DQN, Double DQN. Dueling DQN, DRQN, A3C, DDPG, TRPO, and PPO. You will also learn about recent advancements in reinforcement learning such as imagination augmented agents, learn from human preference, DQfD, HER and many more.

reinforcement-learning deep-reinforcement-learning sarsa q-learning policy-gradients deep-q-network deep-learning-algorithms asynchronous-advantage-actor-critic deep-deterministic-policy-gradient deep-recurrent-q-network double-dqn dueling-dqn hindsight-experience-replay drqn trpo ppoCNN's with Noisy Labels - This notebook looks at a recent paper that discusses how convolutional neural networks that are trained on random labels (with some probability) are still able to acheive good accuracy on MNIST. I thought that the paper showed some eye-brow raising results, so I went ahead and tried it out for myself. It was pretty amazing to see that even when training a CNN with random labels 50% of the time, and the correct labels the other 50% of the time, the network was still able to get a 90+% accuracy. Character Level RNN (Work in Progress) - This notebook shows you how to train a character level RNN in Tensorflow. The idea was inspired by Andrej Karpathy's famous blog post and was based on this Keras implementation. In this notebook, you'll learn more about what the model is doing, and how you can input your own dataset, and train a model to generate similar looking text.

tensorflow deep-learning machine-learningThe Neural Monkey package provides a higher level abstraction for sequential neural network models, most prominently in Natural Language Processing (NLP). It is built on TensorFlow. It can be used for fast prototyping of sequential models in NLP which can be used e.g. for neural machine translation or sentence classification. The higher-level API brings together a collection of standard building blocks (RNN encoder and decoder, multi-layer perceptron) and a simple way of adding new building blocks implemented directly in TensorFlow.

neural-machine-translation tensorflow nlp sequence-to-sequence neural-networks nmt machine-translation mt deep-learning image-captioning encoder-decoder gpuDeep learning is a group of exciting new technologies for neural networks. Through a combination of advanced training techniques and neural network architectural components, it is now possible to create neural networks of much greater complexity. Deep learning allows a neural network to learn hierarchies of information in a way that is like the function of the human brain. This course will introduce the student to computer vision with Convolution Neural Networks (CNN), time series analysis with Long Short-Term Memory (LSTM), classic neural network structures and application to computer security. High Performance Computing (HPC) aspects will demonstrate how deep learning can be leveraged both on graphical processing units (GPUs), as well as grids. Focus is primarily upon the application of deep learning to problems, with some introduction mathematical foundations. Students will use the Python programming language to implement deep learning using Google TensorFlow and Keras. It is not necessary to know Python prior to this course; however, familiarity of at least one programming language is assumed. This course will be delivered in a hybrid format that includes both classroom and online instruction. This syllabus presents the expected class schedule, due dates, and reading assignments. Download current syllabus.

neural-network machine-learning tensorflow keras deeplearningA comprehensive list of Deep Learning / Artificial Intelligence and Machine Learning tutorials - rapidly expanding into areas of AI/Deep Learning / Machine Vision / NLP and industry specific areas such as Automotives, Retail, Pharma, Medicine, Healthcare by Tarry Singh until at-least 2020 until he finishes his Ph.D. (which might end up being inter-stellar cosmic networks! Who knows! π)

machine-learning deep-learning tensorflow pytorch keras matplotlib aws kaggle pandas scikit-learn torch artificial-intelligence neural-network convolutional-neural-networks tensorflow-tutorials python-data ipython-notebook capsule-networkThe goal of this repository is to provide comprehensive tutorials for TensorFlow while maintaining the simplicity of the code. Each tutorial includes a detailed explanation (written in .ipynb) format, as well as the source code (in .py format).

deep-learning tensorflow reinforcement-learning machine-learning pattern-recognition object-detection convolutional-neural-networks recurrent-neural-networks neural-networkA simple and well designed structure is essential for any Deep Learning project, so after a lot of practice and contributing in tensorflow projects here's a tensorflow project template that combines simplcity, best practice for folder structure and good OOP design. The main idea is that there's much stuff you do every time you start your tensorflow project, so wrapping all this shared stuff will help you to change just the core idea every time you start a new tensorflow project. You will find a template file and a simple example in the model and trainer folder that shows you how to try your first model simply.

tesnorflow software-engineering oop deep-learning neural-network convolutional-neural-networks tensorflow-tutorials deep-learning-tutorial best-practices tensorflow templateMy blog post on GANs and overview of some associated papers. Generative adversarial networks (GANs) are one of the hottest topics in deep learning. From a high level, GANs are composed of two components, a generator and a discriminator. The discriminator has the task of determining whether a given image looks natural (ie, is an image from the dataset) or looks like it has been artificially created. The task of the generator is to create natural looking images that are similar to the original data distribution, images that look natural enough to fool the discriminator network.

tensorflow tutorial deep-learning generative-adversarial-networkTensorFlow Tutorials with YouTube Videos

tensorflow deep-learning machine-learning reinforcement-learning python-notebook tutorial neural-network youtubeAll pull requests are welcome, make sure to follow the contribution guidelines when you submit pull request.

tensorflow tensorflow-tutorials mnist-classification mnist machine-learning android tensorflow-models machine-learning-android tensorflow-android tensorflow-model mnist-model deep-learning deep-neural-networks deeplearning deep-learning-tutorialA generic image detection program that uses Google's Machine Learning library, Tensorflow and a pre-trained Deep Learning Convolutional Neural Network model called Inception. This model has been pre-trained for the ImageNet Large Visual Recognition Challenge using the data from 2012, and it can differentiate between 1,000 different classes, like Dalmatian, dishwasher etc. The program applies Transfer Learning to this existing model and re-trains it to classify a new set of images.

image-detection machine-learning deep-learning deep-neural-networks convolutional-neural-networks tensorflow
We have large collection of open source products. Follow the tags from
Tag Cloud >>

Open source products are scattered around the web. Please provide information
about the open source projects you own / you use.
**Add Projects.**