modeldb - A system to manage machine learning models

  •        88

ModelDB is an end-to-end system to manage machine learning models. It ingests models and associated metadata as models are being trained, stores model data in a structured format, and surfaces it through a web-frontend for rich querying. ModelDB can be used with any ML environment via the ModelDB Light API. ModelDB native clients can be used for advanced support in spark.ml and scikit-learn. The ModelDB frontend provides rich summaries and graphs showing model data. The frontend provides functionality to slice and dice this data along various attributes (e.g. operations like filter by hyperparameter, group by datasets) and to build custom charts showing model performance.

http://modeldb.csail.mit.edu/
https://github.com/mitdbg/modeldb

Tags
Implementation
License
Platform

   




Related Projects

multiverso - Parameter server framework for distributed machine learning

  •    C++

Multiverso is a parameter server based framework for training machine learning models on big data with numbers of machines. It is currently a standard C++ library and provides a series of friendly programming interfaces. With such easy-to-use APIs, machine learning researchers and practitioners do not need to worry about the system routine issues such as distributed model storage and operation, inter-process and inter-thread communication, multi-threading management, and so on. Instead, they are

tensorflow-image-detection - A generic image detection program that uses Google's Machine Learning library, Tensorflow and a pre-trained Deep Learning Convolutional Neural Network model called Inception

  •    Python

A generic image detection program that uses Google's Machine Learning library, Tensorflow and a pre-trained Deep Learning Convolutional Neural Network model called Inception. This model has been pre-trained for the ImageNet Large Visual Recognition Challenge using the data from 2012, and it can differentiate between 1,000 different classes, like Dalmatian, dishwasher etc. The program applies Transfer Learning to this existing model and re-trains it to classify a new set of images.

auto_ml - Automated machine learning for analytics & production

  •    Python

auto_ml is designed for production. Here's an example that includes serializing and loading the trained model, then getting predictions on single dictionaries, roughly the process you'd likely follow to deploy the trained model. All of these projects are ready for production. These projects all have prediction time in the 1 millisecond range for a single prediction, and are able to be serialized to disk and loaded into a new environment after training.

thinc - 🔮 spaCy's Machine Learning library for NLP in Python

  •    Assembly

Thinc is the machine learning library powering spaCy. It features a battle-tested linear model designed for large sparse learning problems, and a flexible neural network model under development for spaCy v2.0. Thinc is a practical toolkit for implementing models that follow the "Embed, encode, attend, predict" architecture. It's designed to be easy to install, efficient for CPU usage and optimised for NLP and deep learning with text – in particular, hierarchically structured input and variable-length sequences.

seq2seq - Minimal Seq2Seq model with Attention for Neural Machine Translation in PyTorch

  •    Python

Minimal Seq2Seq model with attention for neural machine translation in PyTorch. This implementation relies on torchtext to minimize dataset management and preprocessing parts.


tensorwatch - Debugging, monitoring and visualization for Deep Learning and Reinforcement Learning

  •    Jupyter

TensorWatch is a debugging and visualization tool designed for deep learning and reinforcement learning. It fully leverages Jupyter Notebook to show real time visualizations and offers unique capabilities to query the live training process without having to sprinkle logging statements all over. You can also use TensorWatch to build your own UIs and dashboards. In addition, TensorWatch leverages several excellent libraries for visualizing model graph, review model statistics, explain prediction and so on. TensorWatch is under heavy development with a goal of providing a research platform for debugging machine learning in one easy to use, extensible and hackable package.

Awesome-CoreML-Models - Largest list of models for Core ML (for iOS 11+)

  •    HTML

We've put up the largest collection of machine learning models in Core ML format, to help iOS, macOS, tvOS, and watchOS developers experiment with machine learning techniques. We've created a site with better visualization of the models CoreML.Store, and are working on more advance features. If you've converted a Core ML model, feel free to submit an issue.

interpretable-ml-book - Book about interpretable machine learning

  •    TeX

Explaining the decisions and behaviour of machine learning models. This book is about interpretable machine learning. Machine learning is being built into many products and processes of our daily lives, yet decisions made by machines don't automatically come with an explanation. An explanation increases the trust in the decision and in the machine learning model. As the programmer of an algorithm you want to know whether you can trust the learned model. Did it learn generalizable features? Or are there some odd artifacts in the training data which the algorithm picked up? This book will give an overview over techniques that can be used to make black boxes as transparent as possible and explain decisions. In the first chapter algorithms that produce simple, interpretable models are introduced together with instructions how to interpret the output. The later chapters focus on analyzing complex models and their decisions. In an ideal future, machines will be able to explain their decisions and make a transition into an algorithmic age more human. This books is recommended for machine learning practitioners, data scientists, statisticians and also for stakeholders deciding on the use of machine learning and intelligent algorithms.

TensorFlow-Machine-Learning-Cookbook - Code repository for TensorFlow Machine Learning Cookbook by Packt

  •    Python

This is the code repository for TensorFlow Machine Learning Cookbook, published by Packt. It contains all the supporting project files necessary to work through the book from start to finish. TensorFlow is an open source software library for Machine Intelligence. The independent recipes in this book will teach you how to use TensorFlow for complex data computations and will let you dig deeper and gain more insights into your data than ever before. You’ll work through recipes on training models, model evaluation, sentiment analysis, regression analysis, clustering analysis, artificial neural networks, and deep learning – each using Google’s machine learning library TensorFlow.

shap - A unified approach to explain the output of any machine learning model.

  •    Jupyter

SHAP (SHapley Additive exPlanations) is a unified approach to explain the output of any machine learning model. SHAP connects game theory with local explanations, uniting several previous methods [1-7] and representing the only possible consistent and locally accurate additive feature attribution method based on expectations (see the SHAP NIPS paper for details). The above explanation shows features each contributing to push the model output from the base value (the average model output over the training dataset we passed) to the model output. Features pushing the prediction higher are shown in red, those pushing the prediction lower are in blue.

palladium - Framework for setting up predictive analytics services

  •    Python

Palladium provides means to easily set up predictive analytics services as web services. It is a pluggable framework for developing real-world machine learning solutions. It provides generic implementations for things commonly needed in machine learning, such as dataset loading, model training with parameter search, a web service, and persistence capabilities, allowing you to concentrate on the core task of developing an accurate machine learning model. Having a well-tested core framework that is used for a number of different services can lead to a reduction of costs during development and maintenance due to harmonization of different services being based on the same code base and identical processes. Palladium has a web service overhead of a few milliseconds only, making it possible to set up services with low response times. A configuration file lets you conveniently tie together existing components with components that you developed. As an example, if what you want to do is to develop a model where you load a dataset from a CSV file or an SQL database, and train an SVM classifier to predict one of the rows in the data given the others, and then find out about your model's accuracy, then that's what Palladium allows you to do without writing a single line of code. However, it is also possible to independently integrate own solutions.

machine-learning-samples - Sample applications built using AWS' Amazon Machine Learning.

  •    Python

Each subdirectory contains sample code for using Amazon Machine Learning. Refer to the README.md file in each sub-directory for details on using each sample.This sample application shows how to use Amazon Mechanical Turk to create a labeled dataset from raw tweets, and then build a machine learning model using the Amazon Machine Learning API that predicts whether or not new tweets should be acted upon by customer service. The sample shows how to set up an automated filter using AWS Lambda that monitors tweets on an Amazon Kinesis stream and sends notifications whenever the ML Model predicts that a new tweet is actionable. Notifications go to Amazon SNS, allowing delivery to email, SMS text messages, or other software services.

machine-learning-samples - Sample applications built using AWS' Amazon Machine Learning.

  •    Python

Each subdirectory contains sample code for using Amazon Machine Learning. Refer to the README.md file in each sub-directory for details on using each sample. This sample application shows how to use Amazon Mechanical Turk to create a labeled dataset from raw tweets, and then build a machine learning model using the Amazon Machine Learning API that predicts whether or not new tweets should be acted upon by customer service. The sample shows how to set up an automated filter using AWS Lambda that monitors tweets on an Amazon Kinesis stream and sends notifications whenever the ML Model predicts that a new tweet is actionable. Notifications go to Amazon SNS, allowing delivery to email, SMS text messages, or other software services.

H2O - Fast Scalable Machine Learning API For Smarter Applications

  •    Java

H2O is for data scientists and application developers who need fast, in-memory scalable machine learning for smarter applications. H2O is an open source parallel processing engine for machine learning. Unlike traditional analytics tools, H2O provides a combination of extraordinary math, a high performance parallel architecture, and unrivaled ease of use.

Skater - Python Library for Model Interpretation/Explanations

  •    Python

Skater is a unified framework to enable Model Interpretation for all forms of model to help one build an Interpretable machine learning system often needed for real world use-cases(** we are actively working towards to enabling faithful interpretability for all forms models). It is an open source python library designed to demystify the learned structures of a black box model both globally(inference on the basis of a complete data set) and locally(inference about an individual prediction). The project was started as a research idea to find ways to enable better interpretability(preferably human interpretability) to predictive "black boxes" both for researchers and practioners. The project is still in beta phase.

OpenNLP - Machine learning based toolkit for the processing of natural language text

  •    Java

The Apache OpenNLP library is a machine learning based toolkit for the processing of natural language text. It supports the most common NLP tasks, such as tokenization, sentence segmentation, part-of-speech tagging, named entity extraction, chunking, parsing, and coreference resolution. These tasks are usually required to build more advanced text processing services. OpenNLP also includes maximum entropy and perceptron based machine learning.

tpot - A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming

  •    Python

Consider TPOT your Data Science Assistant. TPOT is a Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.TPOT will automate the most tedious part of machine learning by intelligently exploring thousands of possible pipelines to find the best one for your data.

DALEX - Descriptive mAchine Learning EXplanations

  •    R

Machine Learning models are widely used and have various applications in classification or regression tasks. Due to increasing computational power, availability of new data sources and new methods, ML models are more and more complex. Models created with techniques like boosting, bagging of neural networks are true black boxes. It is hard to trace the link between input variables and model outcomes. They are use because of high performance, but lack of interpretability is one of their weakest sides. In many applications we need to know, understand or prove how input variables are used in the model and what impact do they have on final model prediction. DALEX is a set of tools that help to understand how complex models are working.