MindsDB enables you to use ML predictions in your database using SQL. MindsDB automates and abstracts machine learning models through virtual AI Tables. It can easily make predictions over very complex multivariate time-series data with high cardinality.
Its features include:
Tags | machine-learning clickhouse postgresql ml snowflake mariadb pytorch artificial-intelligence machine-learning-api hacktoberfest automl explainable-ai explainable-ml singlestore |
Implementation | Python |
License | GPLv3 |
Platform | Windows Linux |
XAI is a Machine Learning library that is designed with AI explainability in its core. XAI contains various tools that enable for analysis and evaluation of data and models. The XAI library is maintained by The Institute for Ethical AI & ML, and it was developed based on the 8 principles for Responsible Machine Learning. You can find the documentation at https://ethicalml.github.io/xai/index.html. You can also check out our talk at Tensorflow London where the idea was first conceived - the talk also contains an insight on the definitions and principles in this library.
machine-learning ai evaluation ml artificial-intelligence upsampling bias interpretability feature-importance explainable-ai explainable-ml xai imbalance downsampling explainability bias-evaluation machine-learning-explainability xai-libraryThe AI Explainability 360 toolkit is an open-source library that supports interpretability and explainability of datasets and machine learning models. The AI Explainability 360 Python package includes a comprehensive set of algorithms that cover different dimensions of explanations along with proxy explainability metrics. The AI Explainability 360 interactive experience provides a gentle introduction to the concepts and capabilities by walking through an example use case for different consumer personas. The tutorials and example notebooks offer a deeper, data scientist-oriented introduction. The complete API is also available.
explainable-ai explainable-ml trusted-ai trusted-ml machine-learning deep-learning codait artificial-intelligence explainabil xai ibm-research ibm-research-aiTensorWatch is a debugging and visualization tool designed for deep learning and reinforcement learning. It fully leverages Jupyter Notebook to show real time visualizations and offers unique capabilities to query the live training process without having to sprinkle logging statements all over. You can also use TensorWatch to build your own UIs and dashboards. In addition, TensorWatch leverages several excellent libraries for visualizing model graph, review model statistics, explain prediction and so on. TensorWatch is under heavy development with a goal of providing a research platform for debugging machine learning in one easy to use, extensible and hackable package.
ai deep-learning deeplearning machine-learning machinelearning machinelearning-python reinforcement-learning debugging debugging-tool debugger-visualizer debug monitoring explainable-ai explainable-ml saliency salient-object-detection model-visualizationA curated, but probably biased and incomplete, list of awesome machine learning interpretability resources. If you want to contribute to this list (and please do!) read over the contribution guidelines, send a pull request, or contact me @jpatrickhall.
fairness xai interpretability iml fatml accountability transparency machine-learning data-science data-mining r awesome awesome-list machine-learning-interpretability interpretable-machine-learning interpretable-ml interpretable-ai interpretable-deep-learning explainable-mlShapash is a Python library which aims to make machine learning interpretable and understandable by everyone. It provides several types of visualization that display explicit labels that everyone can understand. Data Scientists can understand their models easily and share their results. End users can understand the decision proposed by a model using a summary of the most influential criteria.
machine-learning transparency lime interpretability ethical-artificial-intelligence explainable-ml shap explainabilityUpdate April 2017: It’s been almost a year since I posted this list of resources, and over the year there’s been an explosion of articles, videos, books, tutorials etc on the subject — even an explosion of ‘lists of resources’ such as this one. It’s impossible for me to keep this up to date. However, the one resource I would like to add is https://ml4a.github.io/ (https://github.com/ml4a) led by Gene Kogan. It’s specifically aimed at artists and the creative coding community. This is a very incomplete and subjective selection of resources to learn about the algorithms and maths of Artificial Intelligence (AI) / Machine Learning (ML) / Statistical Inference (SI) / Deep Learning (DL) / Reinforcement Learning (RL). It is aimed at beginners (those without Computer Science background and not knowing anything about these subjects) and hopes to take them to quite advanced levels (able to read and understand DL papers). It is not an exhaustive list and only contains some of the learning materials that I have personally completed so that I can include brief personal comments on them. It is also by no means the best path to follow (nowadays most MOOCs have full paths all the way from basic statistics and linear algebra to ML/DL). But this is the path I took and in a sense it's a partial documentation of my personal journey into DL (actually I bounced around all of these back and forth like crazy). As someone who has no formal background in Computer Science (but has been programming for many years), the language, notation and concepts of ML/SI/DL and even CS was completely alien to me, and the learning curve was not only steep, but vertical, treacherous and slippery like ice.
You don't need Python to train your own models and perform Machine Learning. This repository is linked to a series I have been writing about on Medium.com, regarding ML in JS.
machine-learning ml ml-in-js artificial-intelligence aiTransmogrifAI (pronounced trăns-mŏgˈrə-fī) is an AutoML library written in Scala that runs on top of Spark. It was developed with a focus on accelerating machine learning developer productivity through machine learning automation, and an API that enforces compile-time type-safety, modularity, and reuse. Through automation, it achieves accuracies close to hand-tuned models with almost 100x reduction in time. Skip to Quick Start and Documentation.
ml automl transformations estimators dsl pipelines machine-learning salesforce einstein features feature-engineering spark sparkml ai automated-machine-learning transmogrification transmogrify structured-data transformersWelcome to Polyaxon, a platform for building, training, and monitoring large scale deep learning applications. Polyaxon deploys into any data center, cloud provider, or can be hosted and managed by Polyaxon, and it supports all the major deep learning frameworks such as Tensorflow, MXNet, Caffe, Torch, etc.
deep-learning machine-learning artificial-intelligence data-science reinforcement-learning kubernetes tensorflow pytorch keras mxnet caffe ai dl ml k8sThe goal of the project is to provide machine learning for everyone, both technical and non-technical users. I needed a tool sometimes, which I can use to fast create a machine learning prototype. Whether to build some proof of concept or create a fast draft model to prove a point. I find myself often stuck at writing boilerplate code and/or thinking too much of how to start this.
data-science machine-learning automation neural-network scikit-learn sklearn machine-learning-algorithms artificial-intelligence neural-networks data-analysis machine-learning-library machinelearning preprocessing automl multilayer-perceptron-network scikitlearn-machine-learning multilayer-perceptron automl-api automl-algorithms automl-experimentsUnity Machine Learning Agents (ML-Agents) is an open-source Unity plugin that enables games and simulations to serve as environments for training intelligent agents. Agents can be trained using reinforcement learning, imitation learning, neuroevolution, or other machine learning methods through a simple-to-use Python API. We also provide implementations (based on TensorFlow) of state-of-the-art algorithms to enable game developers and hobbyists to easily train intelligent agents for 2D, 3D and VR/AR games. These trained agents can be used for multiple purposes, including controlling NPC behavior (in a variety of settings such as multi-agent and adversarial), automated testing of game builds and evaluating different game design decisions pre-release. ML-Agents is mutually beneficial for both game developers and AI researchers as it provides a central platform where advances in AI can be evaluated on Unity’s rich environments and then made accessible to the wider research and game developer communities. For more information, in addition to installation and usage instructions, see our documentation home. If you have used a version of ML-Agents prior to v0.3, we strongly recommend our guide on migrating to v0.3.
reinforcement-learning unity3d deep-learning unity deep-reinforcement-learning neural-networksA comprehensive list of Deep Learning / Artificial Intelligence and Machine Learning tutorials - rapidly expanding into areas of AI/Deep Learning / Machine Vision / NLP and industry specific areas such as Climate / Energy, Automotives, Retail, Pharma, Medicine, Healthcare, Policy, Ethics and more.
machine-learning deep-learning tensorflow pytorch keras matplotlib aws kaggle pandas scikit-learn torch artificial-intelligence neural-network convolutional-neural-networks tensorflow-tutorials python-data ipython-notebook capsule-networkTo respond to these scenarios, KGLIB is the centre of all research projects conducted at Grakn Labs. In particular, its focus is on the integration of machine learning with the Grakn Knowledge Graph. More on this below, in Knowledge Graph Tasks. At present this repo contains one project: Knowledge Graph Convolutional Networks (KGCNs). Go there for more info on getting started with a working example.
machine-learning ai neural-network graph tensorflow graphs ml artificial-intelligence knowledge-graph knowledgebase knowledge-graph-completion relational-learning link-prediction graph-convolutional-networks grakn graql geometric-deep-learning graph-networksGorgonia is a library that helps facilitate machine learning in Go. Write and evaluate mathematical equations involving multidimensional arrays easily. If this sounds like Theano or TensorFlow, it's because the idea is quite similar. Specifically, the library is pretty low-level, like Theano, but has higher goals like Tensorflow.
machine-learning deep-neural-networks deep-learning neural-network automatic-differentiation artificial-intelligence computation-graph deeplearning gradient-descent hacktoberfest differentiation symbolic-differentiation graph-computationThis repository contains a curated list of awesome open source libraries that will help you deploy, monitor, version, scale, and secure your production machine learning.
machine-learning data-mining awesome deep-learning awesome-list interpretability privacy-preserving production-machine-learning mlops privacy-preserving-machine-learning explainability responsible-ai machine-learning-operations ml-ops ml-operations privacy-preserving-ml large-scale-ml production-ml large-scale-machine-learningML Visuals is a new collaborative effort to help the machine learning community in improving science communication by providing free professional, compelling and adequate visuals and figures. Currently, we have over 100 figures (all open community contributions). You are free to use the visuals in your machine learning presentations or blog posts. You don’t need to ask permission to use any of the visuals but it will be nice if you can provide credit to the designer/author (author information found in the slide notes). Check out the versions of the visuals below. This is a project made by the dair.ai community. The latest version of the Google slides can be found in this GitHub repository. Our community members will continue to add more common figures and basic elements in upcoming versions. Think of this as free and open artifacts and templates which you can freely and easily download, copy, distribute, reuse and customize to your own needs.
design machine-learning natural-language-processing deep-learning artificial-intelligenceFresh approach to Machine Learning in PHP. Algorithms, Cross Validation, Neural Network, Preprocessing, Feature Extraction and much more in one library. PHP-ML requires PHP >= 7.1.
machine-learning classification cross-validation feature-extraction artificial-intelligence neural-network data-scienceRedisAI is a Redis module for executing Deep Learning/Machine Learning models and managing their data. Its purpose is being a "workhorse" for model serving, by providing out-of-the-box support for popular DL/ML frameworks and unparalleled performance. RedisAI both maximizes computation throughput and reduces latency by adhering to the principle of data locality , as well as simplifies the deployment and serving of graphs by leveraging on Redis' production-proven infrastructure.
pytorch tensorflow onnxruntime serving-tensors machine-learning deep-learning artificial-intelligenceThe ML workspace is an all-in-one web-based IDE specialized for machine learning and data science. It is simple to deploy and gets you started within minutes to productively built ML solutions on your own machines. This workspace is the ultimate tool for developers preloaded with a variety of popular data science libraries (e.g., Tensorflow, PyTorch, Keras, Sklearn) and dev tools (e.g., Jupyter, VS Code, Tensorboard) perfectly configured, optimized, and integrated. The workspace requires Docker to be installed on your machine (📖 Installation Guide).
nlp docker kubernetes data-science machine-learning r deep-learning jupyter anaconda tensorflow gpu scikit-learn vscode jupyter-notebook data-visualization pytorch neural-networks data-analysis jupyter-labAutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy machine learning and deep learning models on image, text, and tabular data.
data-science machine-learning natural-language-processing computer-vision deep-learning mxnet scikit-learn tabular-data pytorch image-classification ensemble-learning object-detection
We have large collection of open source products. Follow the tags from
Tag Cloud >>
Open source products are scattered around the web. Please provide information
about the open source projects you own / you use.
Add Projects.