AirSim - Open source simulator based on Unreal Engine for autonomous vehicles from Microsoft AI & Research

  •        386

AirSim is a simulator for drones (and soon other vehicles) built on Unreal Engine. It is open-source, cross platform and supports hardware-in-loop with popular flight controllers such as PX4 for physically and visually realistic simulations. It is developed as an Unreal plugin that can simply be dropped in to any Unreal environment you want.

Our goal is to develop AirSim as a platform for AI research to experiment with deep learning, computer vision and reinforcement learning algorithms for autonomous vehicles. For this purpose, AirSim also exposes APIs to retrieve data and control vehicles in a platform independent way.

https://github.com/Microsoft/AirSim

Tags
Implementation
License
Platform

   




Related Projects

carla - Open-source simulator for autonomous driving research.

  •    C++

CARLA is an open-source simulator for autonomous driving research. CARLA has been developed from the ground up to support development, training, and validation of autonomous urban driving systems. In addition to open-source code and protocols, CARLA provides open digital assets (urban layouts, buildings, vehicles) that were created for this purpose and can be used freely. The simulation platform supports flexible specification of sensor suites and environmental conditions. If you want to benchmark your model in the same conditions as in our CoRL’17 paper, check out Benchmarking.

apollo - An open autonomous driving platform

  •    C++

Apollo is a high performance, flexible architecture which accelerates the development, testing, and deployment of Autonomous Vehicles. For business and partnership, please visit our website.

BotSharp - The Open Source AI Chatbot Platform Builder in 100% C# Running in

  •    CSharp

BotSharp is an open source machine learning framework for AI Bot platform builder. This project involves natural language understanding, computer vision and audio processing technologies, and aims to promote the development and application of intelligent robot assistants in information systems. Out-of-the-box machine learning algorithms allow ordinary programmers to develop artificial intelligence applications faster and easier. It's witten in C# running on .Net Core that is full cross-platform framework. C# is a enterprise grade programming language which is widely used to code business logic in information management related system. More friendly to corporate developers. BotSharp adopts machine learning algrithm in C# directly. That will facilitate the feature of the typed language C#, and be more easier when refactoring code in system scope.

ImageAI - A python library built to empower developers to build applications and systems with self-contained Computer Vision capabilities

  •    Python

A python library built to empower developers to build applications and systems with self-contained Deep Learning and Computer Vision capabilities using simple and few lines of code. Built with simplicity in mind, ImageAI supports a list of state-of-the-art Machine Learning algorithms for image prediction, custom image prediction, object detection, video detection, video object tracking and image predictions trainings. ImageAI currently supports image prediction and training using 4 different Machine Learning algorithms trained on the ImageNet-1000 dataset. ImageAI also supports object detection, video detection and object tracking using RetinaNet, YOLOv3 and TinyYOLOv3 trained on COCO dataset. Eventually, ImageAI will provide support for a wider and more specialized aspects of Computer Vision including and not limited to image recognition in special environments and special fields.

tensorwatch - Debugging, monitoring and visualization for Deep Learning and Reinforcement Learning

  •    Jupyter

TensorWatch is a debugging and visualization tool designed for deep learning and reinforcement learning. It fully leverages Jupyter Notebook to show real time visualizations and offers unique capabilities to query the live training process without having to sprinkle logging statements all over. You can also use TensorWatch to build your own UIs and dashboards. In addition, TensorWatch leverages several excellent libraries for visualizing model graph, review model statistics, explain prediction and so on. TensorWatch is under heavy development with a goal of providing a research platform for debugging machine learning in one easy to use, extensible and hackable package.


GibsonEnv - Gibson Environments: Real-World Perception for Embodied Agents

  •    C

You shouldn't play video games all day, so shouldn't your AI! We built a virtual environment simulator, Gibson, that offers real-world experience for learning perception. I. being from the real-world and reflecting its semantic complexity through virtualizing real spaces, II. having a baked-in mechanism for transferring to real-world (Goggles function), and III. embodiment of the agent and making it subject to constraints of space and physics via integrating a physics engine (Bulletphysics).

ai-resources - Selection of resources to learn Artificial Intelligence / Machine Learning / Statistical Inference / Deep Learning / Reinforcement Learning

  •    

Update April 2017: It’s been almost a year since I posted this list of resources, and over the year there’s been an explosion of articles, videos, books, tutorials etc on the subject — even an explosion of ‘lists of resources’ such as this one. It’s impossible for me to keep this up to date. However, the one resource I would like to add is https://ml4a.github.io/ (https://github.com/ml4a) led by Gene Kogan. It’s specifically aimed at artists and the creative coding community. This is a very incomplete and subjective selection of resources to learn about the algorithms and maths of Artificial Intelligence (AI) / Machine Learning (ML) / Statistical Inference (SI) / Deep Learning (DL) / Reinforcement Learning (RL). It is aimed at beginners (those without Computer Science background and not knowing anything about these subjects) and hopes to take them to quite advanced levels (able to read and understand DL papers). It is not an exhaustive list and only contains some of the learning materials that I have personally completed so that I can include brief personal comments on them. It is also by no means the best path to follow (nowadays most MOOCs have full paths all the way from basic statistics and linear algebra to ML/DL). But this is the path I took and in a sense it's a partial documentation of my personal journey into DL (actually I bounced around all of these back and forth like crazy). As someone who has no formal background in Computer Science (but has been programming for many years), the language, notation and concepts of ML/SI/DL and even CS was completely alien to me, and the learning curve was not only steep, but vertical, treacherous and slippery like ice.

UETorch - A Torch plugin for Unreal Engine 4.

  •    C++

UETorch is an Unreal Engine 4 plugin that adds support for embedded Lua/Torch scripts in the game engine loop, and a set of Lua APIs for providing user input, taking screenshots and segmentation masks, controlling game state, running faster than real time, etc. Torch is an AI Research platform that is focused on deep learning. UETorch strongly leverages the sparsely documented ScriptPlugin plugin provided with Unreal Engine 4.Some recent research done using the UETorch platform is detailed in this paper "Learning Physical Intuition of Block Towers by Example" where we explore the ability of deep feed-forward models to learn intuitive physics.

self-driving-car - The Udacity open source self-driving car project

  •    Jupyter

At Udacity, we believe in democratizing education. How can we provide opportunity to everyone on the planet? We also believe in teaching really amazing and useful subject matter. When we decided to build the Self-Driving Car Nanodegree program, to teach the world to build autonomous vehicles, we instantly knew we had to tackle our own self-driving car too. You can read more about our plans for this project.

ELF - An End-To-End, Lightweight and Flexible Platform for Game Research

  •    C++

ELF is an Extensive, Lightweight and Flexible platform for game research, in particular for real-time strategy (RTS) games. On the C++-side, ELF hosts multiple games in parallel with C++ threading. On the Python side, ELF returns one batch of game state at a time, making it very friendly for modern RL. In comparison, other platforms (e.g., OpenAI Gym) wraps one single game instance with one Python interface. This makes concurrent game execution a bit complicated, which is a requirement of many modern reinforcement learning algorithms. Besides, ELF now also provides a Python version for running concurrent game environments, by Python multiprocessing with ZeroMQ inter-process communication. See ./ex_elfpy.py for a simple example.

polyaxon - An open source platform for reproducible machine learning and deep learning on kubernetes

  •    Python

Welcome to Polyaxon, a platform for building, training, and monitoring large scale deep learning applications. Polyaxon deploys into any data center, cloud provider, or can be hosted and managed by Polyaxon, and it supports all the major deep learning frameworks such as Tensorflow, MXNet, Caffe, Torch, etc.

lab - A customisable 3D platform for agent-based AI research

  •    C

DeepMind Lab is a 3D learning environment based on id Software's Quake III Arena via ioquake3 and other open source software. DeepMind Lab provides a suite of challenging 3D navigation and puzzle-solving tasks for learning agents. Its primary purpose is to act as a testbed for research in artificial intelligence, especially deep reinforcement learning.

basic_reinforcement_learning - An introduction series to Reinforcement Learning (RL) with comprehensive step-by-step tutorials

  •    Jupyter

This repository aims to provide an introduction series to reinforcement learning (RL) by delivering a walkthough on how to code different RL techniques. A quick background review of RL is available here.

visionworkbench - The NASA Vision Workbench is a general purpose image processing and computer vision library developed by the Autonomous Systems and Robotics (ASR) Area in the Intelligent Systems Division at the NASA Ames Research Center

  •    C++

The NASA Vision Workbench is a general purpose image processing and computer vision library developed by the Autonomous Systems and Robotics (ASR) Area in the Intelligent Systems Division at the NASA Ames Research Center.

sod - An Embedded Computer Vision & Machine Learning Library (CPU Optimized & IoT Capable)

  •    C

SOD is an embedded, modern cross-platform computer vision and machine learning software library that expose a set of APIs for deep-learning, advanced media analysis & processing including real-time, multi-class object detection and model training on embedded systems with limited computational resource and IoT devices. SOD was built to provide a common infrastructure for computer vision applications and to accelerate the use of machine perception in open source as well commercial products.

Accord.NET - Machine learning, Computer vision, Statistics and general scientific computing for .NET

  •    CSharp

The Accord.NET project provides machine learning, statistics, artificial intelligence, computer vision and image processing methods to .NET. It can be used on Microsoft Windows, Xamarin, Unity3D, Windows Store applications, Linux or mobile.

LightNet - LightNet: Light-weight Networks for Semantic Image Segmentation (Cityscapes and Mapillary Vistas Dataset)

  •    Python

This repository contains the code (in PyTorch) for: "LightNet: Light-weight Networks for Semantic Image Segmentation " (underway) by Huijun Liu @ TU Braunschweig. Semantic Segmentation is a significant part of the modern autonomous driving system, as exact understanding the surrounding scene is very important for the navigation and driving decision of the self-driving car. Nowadays, deep fully convolutional networks (FCNs) have a very significant effect on semantic segmentation, but most of the relevant researchs have focused on improving segmentation accuracy rather than model computation efficiency. However, the autonomous driving system is often based on embedded devices, where computing and storage resources are relatively limited. In this paper we describe several light-weight networks based on MobileNetV2, ShuffleNet and Mixed-scale DenseNet for semantic image segmentation task, Additionally, we introduce GAN for data augmentation[17] (pix2pixHD) concurrent Spatial-Channel Sequeeze & Excitation (SCSE) and Receptive Field Block (RFB) to the proposed network. We measure our performance on Cityscapes pixel-level segmentation, and achieve up to 70.72% class mIoU and 88.27% cat. mIoU. We evaluate the trade-offs between mIoU, and number of operations measured by multiply-add (MAdd), as well as the number of parameters.

ViZDoom - Doom-based AI Research Platform for Reinforcement Learning from Raw Visual Information

  •    C++

ViZDoom allows developing AI bots that play Doom using only the visual information (the screen buffer). It is primarily intended for research in machine visual learning, and deep reinforcement learning, in particular. ViZDoom is based on ZDoom to provide the game mechanics.