- 1260

Prince uses pandas to manipulate dataframes, as such it expects an initial dataframe to work with. In the following example, a Principal Component Analysis (PCA) is applied to the iris dataset. Under the hood Prince decomposes the dataframe into two eigenvector matrices and one eigenvalue array thanks to a Singular Value Decomposition (SVD). The eigenvectors can then be used to project the initial dataset onto lower dimensions.The first plot displays the rows in the initial dataset projected on to the two first right eigenvectors (the obtained projections are called principal coordinates). The ellipses are 90% confidence intervals.

http://prince.readthedocs.io/en/latest/https://github.com/MaxHalford/prince

Tags | pandas pca ca mca svd factor-analysis |

Implementation | Python |

License | MIT |

Platform | Windows Linux |

Alphalens is a Python Library for performance analysis of predictive (alpha) stock factors. Alphalens works great with the Zipline open source backtesting library, and Pyfolio which provides performance and risk analysis of financial portfolios.Check out the example notebooks for more on how to read and use the factor tear sheet.

finance pandas numpy algorithmic-trading jupyterChris Fonnesbeck is an Assistant Professor in the Department of Biostatistics at the Vanderbilt University School of Medicine. He specializes in computational statistics, Bayesian methods, meta-analysis, and applied decision analysis. He originally hails from Vancouver, BC and received his Ph.D. from the University of Georgia. This tutorial will introduce the use of Python for statistical data analysis, using data stored as Pandas DataFrame objects. Much of the work involved in analyzing data resides in importing, cleaning and transforming data in preparation for analysis. Therefore, the first half of the course is comprised of a 2-part overview of basic and intermediate Pandas usage that will show how to effectively manipulate datasets in memory. This includes tasks like indexing, alignment, join/merge methods, date/time types, and handling of missing data. Next, we will cover plotting and visualization using Pandas and Matplotlib, focusing on creating effective visual representations of your data, while avoiding common pitfalls. Finally, participants will be introduced to methods for statistical data modeling using some of the advanced functions in Numpy, Scipy and Pandas. This will include fitting your data to probability distributions, estimating relationships among variables using linear and non-linear models, and a brief introduction to bootstrapping methods. Each section of the tutorial will involve hands-on manipulation and analysis of sample datasets, to be provided to attendees in advance.

pandas is a Python package providing fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis / manipulation tool available in any language. It is already well on its way toward this goal. Binary installers for the latest released version are available at the Python package index and on conda.

data-analysis pandas flexible alignmentRead about the series, and view all of the videos on one page: Easier data analysis in Python with pandas.

data-science jupyter-notebook pandas tutorial data-analysis data-cleaningThe JavaScript data transformation and analysis toolkit inspired by Pandas and LINQ. Implemented in TypeScript, used in JavaScript ES5+ or TypeScript.

data-wrangling data-forge data data-analysis nodejs pandas visualization data-visualization data-management data-manipulation data-munging data-cleaning data-cleansing csv json data-science data-clensingxarray (formerly xray) is an open source project and Python package that aims to bring the labeled data power of pandas to the physical sciences, by providing N-dimensional variants of the core pandas data structures. Our goal is to provide a pandas-like and pandas-compatible toolkit for analytics on multi-dimensional arrays, rather than the tabular data for which pandas excels. Our approach adopts the Common Data Model for self- describing scientific data in widespread use in the Earth sciences: xarray.Dataset is an in-memory representation of a netCDF file.

scientific-computing netcdf numpy data-science pandas dataframes data-analysis pydataInspired by 100 Numpy exerises, here are 100* short puzzles for testing your knowledge of pandas' power. Since pandas is a large library with many different specialist features and functions, these excercises focus mainly on the fundamentals of manipulating data (indexing, grouping, aggregating, cleaning), making use of the core DataFrame and Series objects. Many of the excerises here are straightforward in that the solutions require no more than a few lines of code (in pandas or NumPy - don't go using pure Python!). Choosing the right methods and following best practices is the underlying goal.

pandas numpy data-analysisUp to date remote data access for pandas, works for multiple versions of pandas. As of v0.6.0 Yahoo!, Google Options, Google Quotes and EDGAR have been immediately deprecated due to large changes in their API and no stable replacement.

html data-analysis data dataset stock-data finance financial-data pydata pandaspandas is a Python library for doing data analysis. It's really fast and lets you do exploratory work incredibly quickly. The goal of this cookbook is to give you some concrete examples for getting started with pandas. The docs are really comprehensive. However, I've often had people tell me that they have some trouble getting started, so these are examples with real-world data, and all the bugs and weirdness that entails.

AiLearning: 机器学习 - MachineLearning - ML、深度学习 - DeepLearning - DL、自然语言处理 NLP

fp-growth apriori mahchine-leaning naivebayes svm adaboost kmeans svd pca logistic regression recommendedsystem sklearn scikit-learn nlp deeplearning dnn lstm rnnFed up with a ton of tutorials but no easy way to find exercises I decided to create a repo just with exercises to practice pandas. Don't get me wrong, tutorials are great resources, but to learn is to do. So unless you practice you won't learn. My suggestion is that you learn a topic in a tutorial or video and then do exercises. Learn one more topic and do exercises. If you got the answer wrong, don't go directly to the solution with code.

pandas exercise practice tutorial data-analysisSparklingPandas aims to make it easy to use the distributed computing power of PySpark to scale your data analysis with Pandas. SparklingPandas builds on Spark's DataFrame class to give you a polished, pythonic, and Pandas-like API. See SparklingPandas.com.

NFStream is a Python package providing fast, flexible, and expressive data structures designed to make working with online or offline network data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world network data analysis in Python. Additionally, it has the broader goal of becoming a common network data processing framework for researchers providing data reproducibility across experiments. NFStream extracts +90 flow features and can convert it directly to a pandas Dataframe or a CSV file.

data-science data-analysis data-mining network-analysis network-security network-monitoring cybersecurity machine-learning artificial-intelligence dataset-generation deep-packet-inspection netflow traffic-analysis traffic-classification pcap packet-capture packet-analyser ndpiRumale (Ruby machine learning) is a machine learning library in Ruby. Rumale provides machine learning algorithms with interfaces similar to Scikit-Learn in Python. Rumale supports Linear / Kernel Support Vector Machine, Logistic Regression, Linear Regression, Ridge, Lasso, Kernel Ridge, Factorization Machine, Naive Bayes, Decision Tree, AdaBoost, Gradient Tree Boosting, Random Forest, Extra-Trees, K-nearest neighbor classifier, K-Means, K-Medoids, Gaussian Mixture Model, DBSCAN, SNN, Power Iteration Clustering, Mutidimensional Scaling, t-SNE, Principal Component Analysis, Kernel PCA and Non-negative Matrix Factorization. This project was formerly known as "SVMKit". If you are using SVMKit, please install Rumale and replace SVMKit constants with Rumale.

machine-learning data-science data-analysis artificial-intelligenceStop plotting your data - annotate your data and let it visualize itself. HoloViews is an open-source Python library designed to make data analysis and visualization seamless and simple. With HoloViews, you can usually express what you want to do in very few lines of code, letting you focus on what you are trying to explore and convey, not on the process of plotting.

visualization analysis bokeh matplotlib interactive data-science exploratory-data-analysis pandasThe Modular toolkit for Data Processing (MDP) is a Python data processing framework. From the user's perspective, MDP is a collection of supervised and unsupervised learning algorithms and other data processing units that can be combined into data processing sequences and more complex feed-forward network architectures. From the scientific developer's perspective, MDP is a modular framework, which can easily be expanded. The implementation of new algorithms is easy and intuitive. The new i

Modin uses Ray to provide an effortless way to speed up your pandas notebooks, scripts, and libraries. Unlike other distributed DataFrame libraries, Modin provides seamless integration and compatibility with existing pandas code. Even using the DataFrame constructor is identical. To use Modin, you do not need to know how many cores your system has and you do not need to specify how to distribute the data. In fact, you can continue using your previous pandas notebooks while experiencing a considerable speedup from Modin, even on a single machine. Once you’ve changed your import statement, you’re ready to use Modin just like you would pandas.

dataframe pandas ray distributed datascience pandas-on-ray modin sqlZipline is a Pythonic algorithmic trading library. It is an event-driven system that supports both backtesting and live-trading. Zipline is currently used in production as the backtesting and live-trading engine powering Quantopian -- a free, community-centered, hosted platform for building and executing trading strategies.Note: Installing Zipline via pip is slightly more involved than the average Python package. Simply running pip install zipline will likely fail if you've never installed any scientific Python packages before.

algorithmic-trading trading machine-learning stock-analysis利用Python进行数据分析 第二版 (2017) 中文翻译笔记

python-for-data-analysis jupyter-notebook chinese-translation data-analysis pandasagate is a Python data analysis library that is optimized for humans instead of machines. It is an alternative to numpy and pandas that solves real-world problems with readable code. agate was previously known as journalism.

We have large collection of open source products. Follow the tags from
Tag Cloud >>

Open source products are scattered around the web. Please provide information
about the open source projects you own / you use.
**Add Projects.**