decagon - Graph convolutional neural network for multirelational link prediction

  •        8

This repository contains code necessary to run the Decagon algorithm. Decagon is a method for learning node embeddings in multimodal graphs, and is especially useful for link prediction in highly multi-relational settings. See our paper for details on the algorithm. Decagon is used to address a burning question in pharmacology, which is that of predicting safety of drug combinations.



Related Projects

AmpliGraph - Python library for Representation Learning on Knowledge Graphs https://docs

  •    Python

Open source library based on TensorFlow that predicts links between concepts in a knowledge graph. AmpliGraph is a suite of neural machine learning models for relational Learning, a branch of machine learning that deals with supervised learning on knowledge graphs.

CNTK - Computational Network Toolkit (CNTK)

  •    C++

The Microsoft Cognitive Toolkit is a free, easy-to-use, open-source, commercial-grade toolkit that trains deep learning algorithms to learn like the human brain. It is a unified deep-learning toolkit that describes neural networks as a series of computational steps via a directed graph.

tensorflow-image-detection - A generic image detection program that uses Google's Machine Learning library, Tensorflow and a pre-trained Deep Learning Convolutional Neural Network model called Inception

  •    Python

A generic image detection program that uses Google's Machine Learning library, Tensorflow and a pre-trained Deep Learning Convolutional Neural Network model called Inception. This model has been pre-trained for the ImageNet Large Visual Recognition Challenge using the data from 2012, and it can differentiate between 1,000 different classes, like Dalmatian, dishwasher etc. The program applies Transfer Learning to this existing model and re-trains it to classify a new set of images.

darkflow - Translate darknet to tensorflow

  •    Python

Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In case the weight file cannot be found, I uploaded some of mine here, which include yolo-full and yolo-tiny of v1.0, tiny-yolo-v1.1 of v1.1 and yolo, tiny-yolo-voc of v2.

practical-machine-learning-with-python - Master the essential skills needed to recognize and solve complex real-world problems with Machine Learning and Deep Learning by leveraging the highly popular Python Machine Learning Eco-system

  •    Jupyter

"Data is the new oil" is a saying which you must have heard by now along with the huge interest building up around Big Data and Machine Learning in the recent past along with Artificial Intelligence and Deep Learning. Besides this, data scientists have been termed as having "The sexiest job in the 21st Century" which makes it all the more worthwhile to build up some valuable expertise in these areas. Getting started with machine learning in the real world can be overwhelming with the vast amount of resources out there on the web. "Practical Machine Learning with Python" follows a structured and comprehensive three-tiered approach packed with concepts, methodologies, hands-on examples, and code. This book is packed with over 500 pages of useful information which helps its readers master the essential skills needed to recognize and solve complex problems with Machine Learning and Deep Learning by following a data-driven mindset. By using real-world case studies that leverage the popular Python Machine Learning ecosystem, this book is your perfect companion for learning the art and science of Machine Learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute Machine Learning systems and projects successfully.

3D-convolutional-speaker-recognition - :speaker: Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

  •    Python

This repository contains the code release for our paper titled as "Text-Independent Speaker Verification Using 3D Convolutional Neural Networks". The link to the paper is provided as well. The code has been developed using TensorFlow. The input pipeline must be prepared by the users. This code is aimed to provide the implementation for Speaker Verification (SR) by using 3D convolutional neural networks following the SR protocol.

Deep-Learning-with-Keras - Code repository for Deep Learning with Keras published by Packt

  •    Jupyter

This is the code repository for Deep Learning with Keras, published by Packt. It contains all the supporting project files necessary to work through the book from start to finish. This book starts by introducing you to supervised learning algorithms such as simple linear regression, classical multilayer perceptron, and more sophisticated Deep Convolutional Networks. In addition, you will also understand unsupervised learning algorithms such as Autoencoders, Restricted Boltzmann Machines, and Deep Belief Networks. Recurrent Networks and Long Short Term Memory (LSTM) networks are also explained in detail. You will also explore image processing involving the recognition of handwritten digital images, the classification of images into different categories, and advanced object recognition with related image annotations. An example of the identification of salient points for face detection is also provided.

keras - Deep Learning library for Python. Runs on TensorFlow, Theano, or CNTK.

  •    Python

Keras is a high-level neural networks API, written in Python and capable of running on top of TensorFlow, CNTK, or Theano. It was developed with a focus on enabling fast experimentation. Being able to go from idea to result with the least possible delay is key to doing good research.

cnn_graph - Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

  •    Jupyter

Michaël Defferrard, Xavier Bresson, Pierre Vandergheynst, Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering, Neural Information Processing Systems (NIPS), 2016. Clone this repository.

ConvNetJS - Javascript implementation of Neural networks

  •    Javascript

ConvNetJS is a Javascript implementation of Neural networks, It currently supports Common Neural Network modules, Classification (SVM/Softmax) and Regression (L2) cost functions, A MagicNet class for fully automatic neural network learning (automatic hyperparameter search and cross-validatations), Ability to specify and train Convolutional Networks that process images, An experimental Reinforcement Learning module, based on Deep Q Learning.

grenade - Deep Learning in Haskell

  •    Haskell

Grenade is a composable, dependently typed, practical, and fast recurrent neural network library for concise and precise specifications of complex networks in Haskell. And that's it. Because the types are so rich, there's no specific term level code required to construct this network; although it is of course possible and easy to construct and deconstruct the networks and layers explicitly oneself.

applied-deep-learning-resources - A collection of research articles, blog posts, slides and code snippets about deep learning in applied settings


A collection of research articles, blog posts, slides and code snippets about deep learning in applied settings. Including trained models and simple methods that can be used out of the box. Mainly focusing on Convolutional Neural Networks (CNN) but Recurrent Neural Networks (RNN), deep Q-Networks (DQN) and other interesting architectures will also be listed. ImageNet is the most important image classification and localization competition. Other data sets with results can be found from here: "Discover the current state of the art in objects classification." [link].

deep-learning - Repo for the Deep Learning Nanodegree Foundations program.

  •    Jupyter

This repository contains material related to Udacity's Deep Learning Nanodegree Foundation program. It consists of a bunch of tutorial notebooks for various deep learning topics. In most cases, the notebooks lead you through implementing models such as convolutional networks, recurrent networks, and GANs. There are other topics covered such as weight intialization and batch normalization. There are also notebooks used as projects for the Nanodegree program. In the program itself, the projects are reviewed by Udacity experts, but they are available here as well.

clDNN - Compute Library for Deep Neural Networks (clDNN)

  •    C++

Compute Library for Deep Neural Networks (clDNN) is an open source performance library for Deep Learning (DL) applications intended for acceleration of DL Inference on Intel® Processor Graphics – including HD Graphics and Iris® Graphics. clDNN includes highly optimized building blocks for implementation of convolutional neural networks (CNN) with C and C++ interfaces. We created this project to enable the DL community to innovate on Intel® processors. Usages supported: Image recognition, image detection, and image segmentation.

dll - Deep Learning Library (DLL) for C++ (ANNs, CNNs, RBMs, DBNs...)

  •    C++

DLL is a library that aims to provide a C++ implementation of Restricted Boltzmann Machine (RBM) and Deep Belief Network (DBN) and their convolution versions as well. It also has support for some more standard neural networks. Note: When you clone the library, you need to clone the sub modules as well, using the --recursive option.