vaex - Lazy Out-of-Core DataFrames for Python, visualize and explore big tabular data at a billion rows per second

  •        638

Vaex is a python library for Out-of-Core DataFrames (similar to Pandas), to visualize and explore big tabular datasets. It can calculate statistics such as mean, sum, count, standard deviation etc, on an N-dimensional grid up to a billion (109) objects/rows per second. Visualization is done using histograms, density plots and 3d volume rendering, allowing interactive exploration of big data. Vaex uses memory mapping, zero memory copy policy and lazy computations for best performance (no memory wasted).

https://vaex.io
https://github.com/maartenbreddels/vaex

Tags
Implementation
License
Platform

   




Related Projects

vaex - Out-of-Core hybrid Apache Arrow/NumPy DataFrame for Python, ML, visualize and explore big tabular data at a billion rows per second 🚀

  •    Python

Vaex is a high performance Python library for lazy Out-of-Core DataFrames (similar to Pandas), to visualize and explore big tabular datasets. It calculates statistics such as mean, sum, count, standard deviation etc, on an N-dimensional grid for more than a billion (10^9) samples/rows per second. Visualization is done using histograms, density plots and 3d volume rendering, allowing interactive exploration of big data. Vaex uses memory mapping, zero memory copy policy and lazy computations for best performance (no memory wasted). HDF5 and Apache Arrow supported.

Marketstore - DataFrame Server for Financial Timeseries Data

  •    Go

MarketStore is a database server optimized for financial timeseries data. You can think of it as an extensible DataFrame service that is accessible from anywhere in your system, at higher scalability. It is designed from the ground up to address scalability issues around handling large amounts of financial market data used in algorithmic trading backtesting, charting, and analyzing price history with data spanning many years, including tick-level for the all US equities or the exploding crypto currencies space. If you are struggling with managing lots of HDF5 files, this is perfect solution to your problem.

mio - Cross-platform C++11 header-only library for memory mapped file IO

  •    C++

An easy to use header-only cross-platform C++11 memory mapping library with an MIT license. mio has been created with the goal to be easily includable (i.e. no dependencies) in any C++ project that needs memory mapped file IO without the need to pull in Boost.

statistical-analysis-python-tutorial - Statistical Data Analysis in Python

  •    HTML

Chris Fonnesbeck is an Assistant Professor in the Department of Biostatistics at the Vanderbilt University School of Medicine. He specializes in computational statistics, Bayesian methods, meta-analysis, and applied decision analysis. He originally hails from Vancouver, BC and received his Ph.D. from the University of Georgia. This tutorial will introduce the use of Python for statistical data analysis, using data stored as Pandas DataFrame objects. Much of the work involved in analyzing data resides in importing, cleaning and transforming data in preparation for analysis. Therefore, the first half of the course is comprised of a 2-part overview of basic and intermediate Pandas usage that will show how to effectively manipulate datasets in memory. This includes tasks like indexing, alignment, join/merge methods, date/time types, and handling of missing data. Next, we will cover plotting and visualization using Pandas and Matplotlib, focusing on creating effective visual representations of your data, while avoiding common pitfalls. Finally, participants will be introduced to methods for statistical data modeling using some of the advanced functions in Numpy, Scipy and Pandas. This will include fitting your data to probability distributions, estimating relationships among variables using linear and non-linear models, and a brief introduction to bootstrapping methods. Each section of the tutorial will involve hands-on manipulation and analysis of sample datasets, to be provided to attendees in advance.


gota - Gota: DataFrames and data wrangling in Go (Golang)

  •    Go

This is an implementation of DataFrames, Series and data wrangling methods for the Go programming language. The API is still in flux so use at your own risk.The term DataFrame typically refers to a tabular dataset that can be viewed as a two dimensional table. Often the columns of this dataset refers to a list of features, while the rows represent a number of measurements. As the data on the real world is not perfect, DataFrame supports non measurements or NaN elements.

tech.ml.dataset - A Clojure high performance data processing system

  •    Clojure

tech.ml.dataset is a Clojure library for data processing and machine learning. Datasets are currently in-memory columnwise databases and we support parsing from file or input-stream. We support these formats: raw/gzipped csv/tsv, xls, xlsx, json, and sequences of maps as input sources. SQL bindings are provided as a separate library. Data size in memory is minimized (primitive arrays), datetime types are often converted to an integer representation and strings are loaded into string tables. These features together dramatically decrease the working set size in memory. Because data is stored in columnar fashion columnwise operations on the dataset are very fast.

LArray - Large off-heap arrays for Java/Scala

  •    Scala

A library for managing large off-heap arrays that can hold more than 2G (2^31) entries in Java and Scala. Notably LArray is disposable by calling LArray.free or you can let GC automatically release the memory. LArray also can be used to create an mmap (memory-mapped file) whose size is more than 2GB

gramm - Gramm is a complete data visualization toolbox for Matlab

  •    Matlab

Gramm is a powerful plotting toolbox which allows to quickly create complex, publication-quality figures in Matlab, and is inspired by R's ggplot2 library by Hadley Wickham. As a reference to this inspiration, gramm stands for GRAMmar of graphics for Matlab. Gramm is a data visualization toolbox for Matlab that allows to produce publication-quality plots from grouped data easily and flexibly. Matlab can be used for complex data analysis using a high-level interface: it supports mixed-type tabular data via tables, provides statistical functions that accept these tables as arguments, and allows users to adopt a split-apply-combine approach (Wickham 2011) with rowfun(). However, the standard plotting functionality in Matlab is mostly low-level, allowing to create axes in figure windows and draw geometric primitives (lines, points, patches) or simple statistical visualizations (histograms, boxplots) from numerical array data. Producing complex plots from grouped data thus requires iterating over the various groups in order to make successive statistical computations and low-level draw calls, all the while handling axis and color generation in order to visually separate data by groups. The corresponding code is often long, not easily reusable, and makes exploring alternative plot designs tedious.

lux - Python API for Intelligent Visual Data Discovery

  •    Python

Lux is a Python library that facilitate fast and easy data exploration by automating the visualization and data analysis process. By simply printing out a dataframe in a Jupyter notebook, Lux recommends a set of visualizations highlighting interesting trends and patterns in the dataset. Visualizations are displayed via an interactive widget that enables users to quickly browse through large collections of visualizations and make sense of their data. Here is a 1-min video introducing Lux, and slides from a more extended talk.

php-export-data - PHP class to export data in CSV, TSV, or Excel XML (aka SpreadsheeML) format to a file or directly to the browser

  •    PHP

A simple library for exporting tabular data to Excel-friendly XML, CSV, or TSV. It supports streaming exported data to a file or directly to the browser as a download so it is suitable for exporting large datasets (you won't run out of memory). See the test/ directory for more examples.

spark - .NET for Apache® Spark™ makes Apache Spark™ easily accessible to .NET developers.

  •    CSharp

.NET for Apache Spark provides high performance APIs for using Apache Spark from C# and F#. With these .NET APIs, you can access the most popular Dataframe and SparkSQL aspects of Apache Spark, for working with structured data, and Spark Structured Streaming, for working with streaming data. .NET for Apache Spark is compliant with .NET Standard - a formal specification of .NET APIs that are common across .NET implementations. This means you can use .NET for Apache Spark anywhere you write .NET code allowing you to reuse all the knowledge, skills, code, and libraries you already have as a .NET developer.

cudf - cuDF - GPU DataFrame Library

  •    C++

NOTE: For the latest stable README.md ensure you are on the main branch. Built based on the Apache Arrow columnar memory format, cuDF is a GPU DataFrame library for loading, joining, aggregating, filtering, and otherwise manipulating data.

xarray - N-D labeled arrays and datasets in Python

  •    Python

xarray (formerly xray) is an open source project and Python package that aims to bring the labeled data power of pandas to the physical sciences, by providing N-dimensional variants of the core pandas data structures. Our goal is to provide a pandas-like and pandas-compatible toolkit for analytics on multi-dimensional arrays, rather than the tabular data for which pandas excels. Our approach adopts the Common Data Model for self- describing scientific data in widespread use in the Earth sciences: xarray.Dataset is an in-memory representation of a netCDF file.

evidently - Interactive reports to analyze machine learning models during validation or production monitoring

  •    Jupyter

Interactive reports and JSON profiles to analyze, monitor and debug machine learning models. Evidently helps evaluate machine learning models during validation and monitor them in production. The tool generates interactive visual reports and JSON profiles from pandas DataFrame or csv files. You can use visual reports for ad hoc analysis, debugging and team sharing, and JSON profiles to integrate Evidently in prediction pipelines or with other visualization tools.

Luxun - A high-throughput, persistent, distributed, publish-subscribe messaging system based on memo

  •    Java

A high-throughput, persistent, distributed, publish-subscribe messaging system based on memory mapped file and Thrift RPC.

Dragonfly - An Open-source P2P-based Image and File Distribution System

  •    Go

Dragonfly is an open source intelligent P2P based image and file distribution system. Its goal is to tackle all distribution problems in cloud native scenarios. It is efficient with P2P and CDN technology which reduces image distribution time significantly and expedite delivery. it supports large-scale file distribution with improved downloading speed and success rate and lower consumption of bandwidth, especially cross-IDC bandwidth.

bcolz - A columnar data container that can be compressed.

  •    C

bcolz provides columnar, chunked data containers that can be compressed either in-memory and on-disk. Column storage allows for efficiently querying tables, as well as for cheap column addition and removal. It is based on NumPy, and uses it as the standard data container to communicate with bcolz objects, but it also comes with support for import/export facilities to/from HDF5/PyTables tables and pandas dataframes. bcolz objects are compressed by default not only for reducing memory/disk storage, but also to improve I/O speed. The compression process is carried out internally by Blosc, a high-performance, multithreaded meta-compressor that is optimized for binary data (although it works with text data just fine too).

Apache Superset is a Data Visualization and Data Exploration Platform

  •    Python

Superset is fast, lightweight, intuitive, and loaded with options that make it easy for users of all skill sets to explore and visualize their data, from simple line charts to highly detailed geospatial charts. It easily integrates your data, using either our simple no-code viz builder or state of the art SQL IDE. Superset can query data from any SQL-speaking datastore or data engine (e.g. Presto or Athena) that has a Python DB-API driver and a SQLAlchemy dialect.

Mobius - C# and F# language binding and extensions to Apache Spark

  •    CSharp

Mobius provides C# language binding to Apache Spark enabling the implementation of Spark driver program and data processing operations in the languages supported in the .NET framework like C# or F#.For more code samples, refer to Mobius\examples directory or Mobius\csharp\Samples directory.






We have large collection of open source products. Follow the tags from Tag Cloud >>


Open source products are scattered around the web. Please provide information about the open source projects you own / you use. Add Projects.