- 280

Neural Machine Translation with Keras (Theano and Tensorflow). for obtaining the required packages for running this library.

http://nmt-keras.readthedocs.iohttps://github.com/lvapeab/nmt-keras

Felix Hieber, Tobias Domhan, Michael Denkowski, David Vilar, Artem Sokolov, Ann Clifton and Matt Post (2017): Sockeye: A Toolkit for Neural Machine Translation. In eprint arXiv:cs-CL/1712.05690.If you are interested in collaborating or have any questions, please submit a pull request or issue. You can also send questions to sockeye-dev-at-amazon-dot-com.

deep-learning deep-neural-networks mxnet machine-learning machine-translation neural-machine-translation encoder-decoder attention-mechanism sequence-to-sequence sequence-to-sequence-models sockeye attention-is-all-you-need attention-alignment-visualization attention-model seq2seq convolutional-neural-networks translationA vanilla sequence to sequence model presented in https://arxiv.org/abs/1409.3215, https://arxiv.org/abs/1406.1078 consits of using a recurrent neural network such as an LSTM (http://dl.acm.org/citation.cfm?id=1246450) or GRU (https://arxiv.org/abs/1412.3555) to encode a sequence of words or characters in a source language into a fixed length vector representation and then deocoding from that representation using another RNN in the target language. An extension of sequence to sequence models that incorporate an attention mechanism was presented in https://arxiv.org/abs/1409.0473 that uses information from the RNN hidden states in the source language at each time step in the deocder RNN. This attention mechanism significantly improves performance on tasks like machine translation. A few variants of the attention model for the task of machine translation have been presented in https://arxiv.org/abs/1508.04025.

pytorch seq2seq deep-learning rnnNOTE: THE CODE IS UNDER DEVELOPMENT, PLEASE ALWAYS PULL THE LATEST VERSION FROM HERE. In recent years, sequence-to-sequence (seq2seq) models are used in a variety of tasks from machine translation, headline generation, text summarization, speech to text, to image caption generation. The underlying framework of all these models are usually a deep neural network which contains an encoder and decoder. The encoder processes the input data and a decoder receives the output of the encoder and generates the final output. Although simply using an encoder/decoder model would, most of the time, produce better result than traditional methods on the above-mentioned tasks, researchers proposed additional improvements over these sequence to sequence models, like using an attention-based model over the input, pointer-generation models, and self-attention models. However, all these seq2seq models suffer from two common problems: 1) exposure bias and 2) inconsistency between train/test measurement. Recently a completely fresh point of view emerged in solving these two problems in seq2seq models by using methods in Reinforcement Learning (RL). In these new researches, we try to look at the seq2seq problems from the RL point of view and we try to come up with a formulation that could combine the power of RL methods in decision-making and sequence to sequence models in remembering long memories. In this paper, we will summarize some of the most recent frameworks that combines concepts from RL world to the deep neural network area and explain how these two areas could benefit from each other in solving complex seq2seq tasks. In the end, we will provide insights on some of the problems of the current existing models and how we can improve them with better RL models. We also provide the source code for implementing most of the models that will be discussed in this paper on the complex task of abstractive text summarization.

reinforcement-learning actor-critic policy-gradient abstractive-text-summarization pointer-generator nlpNLP-Models-Tensorflow, Gathers machine learning and tensorflow deep learning models for NLP problems, code simplify inside Jupyter Notebooks 100%. I will attached github repositories for models that I not implemented from scratch, basically I copy, paste and fix those code for deprecated issues.

nlp machine-learning embedded deep-learning chatbot language-detection lstm summarization attention speech-to-text neural-machine-translation optical-character-recognition pos-tagging lstm-seq2seq-tf dnc-seq2seq luong-apiI tried to implement the idea in Attention Is All You Need. They authors claimed that their model, the Transformer, outperformed the state-of-the-art one in machine translation with only attention, no CNNs, no RNNs. How cool it is! At the end of the paper, they promise they will make their code available soon, but apparently it is not so yet. I have two goals with this project. One is I wanted to have a full understanding of the paper. Often it's hard for me to have a good grasp before writing some code for it. Another is to share my code with people who are interested in this model before the official code is unveiled. I got a BLEU score of 17.14. (Recollect I trained with a small dataset, limited vocabulary) Some of the evaluation results are as follows. Details are available in the results folder.

attention-mechanism translation attention-is-all-you-need implementationHi! You have just found Seq2Seq. Seq2Seq is a sequence to sequence learning add-on for the python deep learning library Keras. Using Seq2Seq, you can build and train sequence-to-sequence neural network models in Keras. Such models are useful for machine translation, chatbots (see [4]), parsers, or whatever that comes to your mind. That's it! You have successfully compiled a minimal Seq2Seq model! Next, let's build a 6 layer deep Seq2Seq model (3 layers for encoding, 3 layers for decoding).

This is fairseq, a sequence-to-sequence learning toolkit for Torch from Facebook AI Research tailored to Neural Machine Translation (NMT). It implements the convolutional NMT models proposed in Convolutional Sequence to Sequence Learning and A Convolutional Encoder Model for Neural Machine Translation as well as a standard LSTM-based model. It features multi-GPU training on a single machine as well as fast beam search generation on both CPU and GPU. We provide pre-trained models for English to French, English to German and English to Romanian translation. Note, there is now a PyTorch version fairseq-py of this toolkit and new development efforts will focus on it.

The Neural Monkey package provides a higher level abstraction for sequential neural network models, most prominently in Natural Language Processing (NLP). It is built on TensorFlow. It can be used for fast prototyping of sequential models in NLP which can be used e.g. for neural machine translation or sentence classification. The higher-level API brings together a collection of standard building blocks (RNN encoder and decoder, multi-layer perceptron) and a simple way of adding new building blocks implemented directly in TensorFlow.

neural-machine-translation tensorflow nlp sequence-to-sequence neural-networks nmt machine-translation mt deep-learning image-captioning encoder-decoder gpuChainer-based Python implementation of Transformer, an attention-based seq2seq model without convolution and recurrence. If you want to see the architecture, please see net.py. See "Attention Is All You Need", Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin, arxiv, 2017.

chainer neural-network deep-learning deep-neural-networks attention-mechanism googleMinimal Seq2Seq model with attention for neural machine translation in PyTorch. This implementation relies on torchtext to minimize dataset management and preprocessing parts.

seq2seq deep-learning machine-translationKeras is a high-level neural networks API, written in Python and capable of running on top of TensorFlow, CNTK, or Theano. It was developed with a focus on enabling fast experimentation. Being able to go from idea to result with the least possible delay is key to doing good research.

deep-learning tensorflow theano neural-networks machine-learning data-sciencekeras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seamlessly integrates with the deep learning library Keras. Just like Keras, it works with either Theano or TensorFlow, which means that you can train your algorithm efficiently either on CPU or GPU. Furthermore, keras-rl works with OpenAI Gym out of the box. This means that evaluating and playing around with different algorithms is easy. Of course you can extend keras-rl according to your own needs. You can use built-in Keras callbacks and metrics or define your own. Even more so, it is easy to implement your own environments and even algorithms by simply extending some simple abstract classes. In a nutshell: keras-rl makes it really easy to run state-of-the-art deep reinforcement learning algorithms, uses Keras and thus Theano or TensorFlow and was built with OpenAI Gym in mind.

keras tensorflow theano reinforcement-learning neural-networks machine-learning"Data is the new oil" is a saying which you must have heard by now along with the huge interest building up around Big Data and Machine Learning in the recent past along with Artificial Intelligence and Deep Learning. Besides this, data scientists have been termed as having "The sexiest job in the 21st Century" which makes it all the more worthwhile to build up some valuable expertise in these areas. Getting started with machine learning in the real world can be overwhelming with the vast amount of resources out there on the web. "Practical Machine Learning with Python" follows a structured and comprehensive three-tiered approach packed with concepts, methodologies, hands-on examples, and code. This book is packed with over 500 pages of useful information which helps its readers master the essential skills needed to recognize and solve complex problems with Machine Learning and Deep Learning by following a data-driven mindset. By using real-world case studies that leverage the popular Python Machine Learning ecosystem, this book is your perfect companion for learning the art and science of Machine Learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute Machine Learning systems and projects successfully.

machine-learning deep-learning text-analytics classification clustering natural-language-processing computer-vision data-science spacy nltk scikit-learn prophet time-series-analysis convolutional-neural-networks tensorflow keras statsmodels pandas deep-neural-networksSome examples require MNIST dataset for training and testing. Don't worry, this dataset will automatically be downloaded when running examples (with input_data.py). MNIST is a database of handwritten digits, for a quick description of that dataset, you can check this notebook.

recurrent-neural-networks convolutional-neural-networks deep-learning-tutorial tensorflow tensorlayer keras deep-reinforcement-learning tensorflow-tutorials deep-learning machine-learning notebook autoencoder multi-layer-perceptron reinforcement-learning tflearn neural-networks neural-network neural-machine-translation nlp cnnThis is a research project, not an official NVIDIA product. OpenSeq2Seq main goal is to allow researchers to most effectively explore various sequence-to-sequence models. The efficiency is achieved by fully supporting distributed and mixed-precision training. OpenSeq2Seq is built using TensorFlow and provides all the necessary building blocks for training encoder-decoder models for neural machine translation and automatic speech recognition. We plan to extend it with other modalities in the future.

neural-machine-translation multi-gpu deep-learning sequence-to-sequence seq2seq multi-node speech-recognition speech-to-text mixed-precision float16Visual attention-based OCR model for image recognition with additional tools for creating TFRecords datasets and exporting the trained model with weights as a SavedModel or a frozen graph. This project is based on a model by Qi Guo and Yuntian Deng. You can find the original model in the da03/Attention-OCR repository.

machine-learning ocr tensorflow google-cloud ml cnn seq2seq image-recognition hacktoberfest ocr-recognition google-cloud-mlDeep learning is a group of exciting new technologies for neural networks. Through a combination of advanced training techniques and neural network architectural components, it is now possible to create neural networks of much greater complexity. Deep learning allows a neural network to learn hierarchies of information in a way that is like the function of the human brain. This course will introduce the student to computer vision with Convolution Neural Networks (CNN), time series analysis with Long Short-Term Memory (LSTM), classic neural network structures and application to computer security. High Performance Computing (HPC) aspects will demonstrate how deep learning can be leveraged both on graphical processing units (GPUs), as well as grids. Focus is primarily upon the application of deep learning to problems, with some introduction mathematical foundations. Students will use the Python programming language to implement deep learning using Google TensorFlow and Keras. It is not necessary to know Python prior to this course; however, familiarity of at least one programming language is assumed. This course will be delivered in a hybrid format that includes both classroom and online instruction. This syllabus presents the expected class schedule, due dates, and reading assignments. Download current syllabus.

neural-network machine-learning tensorflow keras deeplearningFeel free add to this via a pull request, with each section alphabetically ordered.

nmt mt neural-machine-translation machine-translation sequence-to-sequence deep-learningUPDATE: Check-out the beta release of OpenNMT a fully supported feature-complete rewrite of seq2seq-attn. Seq2seq-attn will remain supported, but new features and optimizations will focus on the new codebase. Torch implementation of a standard sequence-to-sequence model with (optional) attention where the encoder-decoder are LSTMs. Encoder can be a bidirectional LSTM. Additionally has the option to use characters (instead of input word embeddings) by running a convolutional neural network followed by a highway network over character embeddings to use as inputs.

This library is the official extension repository for the python deep learning library Keras. It contains additional layers, activations, loss functions, optimizers, etc. which are not yet available within Keras itself. All of these additional modules can be used in conjunction with core Keras models and modules. As the community contributions in Keras-Contrib are tested, used, validated, and their utility proven, they may be integrated into the Keras core repository. In the interest of keeping Keras succinct, clean, and powerfully simple, only the most useful contributions make it into Keras. This contribution repository is both the proving ground for new functionality, and the archive for functionality that (while useful) may not fit well into the Keras paradigm.

keras theano tensorflow machine-learning deep-learning neural-networks data-science
We have large collection of open source products. Follow the tags from
Tag Cloud >>

Open source products are scattered around the web. Please provide information
about the open source projects you own / you use.
**Add Projects.**