simulator - A ROS/ROS2 Multi-robot Simulator for Autonomous Vehicles

  •        252

Check out our latest news and subscribe to our mailing list to get the latest updates. LG Electronics America R&D Lab has developed an HDRP Unity-based multi-robot simulator for autonomous vehicle developers. We provide an out-of-the-box solution which can meet the needs of developers wishing to focus on testing their autonomous vehicle algorithms. It currently has integration with The Autoware Foundation's Autoware.auto and Baidu's Apollo platforms, can generate HD maps, and can be immediately used for testing and validation of a whole system with little need for custom integrations. We hope to build a collaborative community among robotics and autonomous vehicle developers by open sourcing our efforts.

https://github.com/lgsvl/simulator

Tags
Implementation
License
Platform

   




Related Projects

AirSim - Open source simulator based on Unreal Engine for autonomous vehicles from Microsoft AI & Research

  •    C++

AirSim is a simulator for drones (and soon other vehicles) built on Unreal Engine. It is open-source, cross platform and supports hardware-in-loop with popular flight controllers such as PX4 for physically and visually realistic simulations. It is developed as an Unreal plugin that can simply be dropped in to any Unreal environment you want.

carla - Open-source simulator for autonomous driving research.

  •    C++

CARLA is an open-source simulator for autonomous driving research. CARLA has been developed from the ground up to support development, training, and validation of autonomous urban driving systems. In addition to open-source code and protocols, CARLA provides open digital assets (urban layouts, buildings, vehicles) that were created for this purpose and can be used freely. The simulation platform supports flexible specification of sensor suites and environmental conditions. If you want to benchmark your model in the same conditions as in our CoRL’17 paper, check out Benchmarking.

ml-agents - Unity Machine Learning Agents

  •    CSharp

Unity Machine Learning Agents (ML-Agents) is an open-source Unity plugin that enables games and simulations to serve as environments for training intelligent agents. Agents can be trained using reinforcement learning, imitation learning, neuroevolution, or other machine learning methods through a simple-to-use Python API. We also provide implementations (based on TensorFlow) of state-of-the-art algorithms to enable game developers and hobbyists to easily train intelligent agents for 2D, 3D and VR/AR games. These trained agents can be used for multiple purposes, including controlling NPC behavior (in a variety of settings such as multi-agent and adversarial), automated testing of game builds and evaluating different game design decisions pre-release. ML-Agents is mutually beneficial for both game developers and AI researchers as it provides a central platform where advances in AI can be evaluated on Unity’s rich environments and then made accessible to the wider research and game developer communities. For more information, in addition to installation and usage instructions, see our documentation home. If you have used a version of ML-Agents prior to v0.3, we strongly recommend our guide on migrating to v0.3.


RLzoo - A Comprehensive Reinforcement Learning Zoo for Simple Usage 🚀

  •    Python

RLzoo is a collection of the most practical reinforcement learning algorithms, frameworks and applications. It is implemented with Tensorflow 2.0 and API of neural network layers in TensorLayer 2, to provide a hands-on fast-developing approach for reinforcement learning practices and benchmarks. It supports basic toy-tests like OpenAI Gym and DeepMind Control Suite with very simple configurations. Moreover, RLzoo supports robot learning benchmark environment RLBench based on Vrep/Pyrep simulator. Other large-scale distributed training framework for more realistic scenarios with Unity 3D, Mujoco, Bullet Physics, etc, will be supported in the future. A Springer textbook is also provided, you can get the free PDF if your institute has Springer license. Different from RLzoo for simple usage with high-level APIs, we also have a RL tutorial that aims to make the reinforcement learning tutorial simple, transparent and straight-forward with low-level APIs, as this would not only benefits new learners of reinforcement learning, but also provide convenience for senior researchers to testify their new ideas quickly.

GibsonEnv - Gibson Environments: Real-World Perception for Embodied Agents

  •    C

You shouldn't play video games all day, so shouldn't your AI! We built a virtual environment simulator, Gibson, that offers real-world experience for learning perception. I. being from the real-world and reflecting its semantic complexity through virtualizing real spaces, II. having a baked-in mechanism for transferring to real-world (Goggles function), and III. embodiment of the agent and making it subject to constraints of space and physics via integrating a physics engine (Bulletphysics).

flightmare - An Open Flexible Quadrotor Simulator

  •    C++

Flightmare is a flexible modular quadrotor simulator. Flightmare is composed of two main components: a configurable rendering engine built on Unity and a flexible physics engine for dynamics simulation. Those two components are totally decoupled and can run independently from each other. Flightmare comes with several desirable features: (i) a large multi-modal sensor suite, including an interface to extract the 3D point-cloud of the scene; (ii) an API for reinforcement learning which can simulate hundreds of quadrotors in parallel; and (iii) an integration with a virtual-reality headset for interaction with the simulated environment. Flightmare can be used for various applications, including path-planning, reinforcement learning, visual-inertial odometry, deep learning, human-robot interaction, etc. Installation instructions can be found in our Wiki.

practical-machine-learning-with-python - Master the essential skills needed to recognize and solve complex real-world problems with Machine Learning and Deep Learning by leveraging the highly popular Python Machine Learning Eco-system

  •    Jupyter

"Data is the new oil" is a saying which you must have heard by now along with the huge interest building up around Big Data and Machine Learning in the recent past along with Artificial Intelligence and Deep Learning. Besides this, data scientists have been termed as having "The sexiest job in the 21st Century" which makes it all the more worthwhile to build up some valuable expertise in these areas. Getting started with machine learning in the real world can be overwhelming with the vast amount of resources out there on the web. "Practical Machine Learning with Python" follows a structured and comprehensive three-tiered approach packed with concepts, methodologies, hands-on examples, and code. This book is packed with over 500 pages of useful information which helps its readers master the essential skills needed to recognize and solve complex problems with Machine Learning and Deep Learning by following a data-driven mindset. By using real-world case studies that leverage the popular Python Machine Learning ecosystem, this book is your perfect companion for learning the art and science of Machine Learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute Machine Learning systems and projects successfully.

ImageAI - A python library built to empower developers to build applications and systems with self-contained Computer Vision capabilities

  •    Python

A python library built to empower developers to build applications and systems with self-contained Deep Learning and Computer Vision capabilities using simple and few lines of code. Built with simplicity in mind, ImageAI supports a list of state-of-the-art Machine Learning algorithms for image prediction, custom image prediction, object detection, video detection, video object tracking and image predictions trainings. ImageAI currently supports image prediction and training using 4 different Machine Learning algorithms trained on the ImageNet-1000 dataset. ImageAI also supports object detection, video detection and object tracking using RetinaNet, YOLOv3 and TinyYOLOv3 trained on COCO dataset. Eventually, ImageAI will provide support for a wider and more specialized aspects of Computer Vision including and not limited to image recognition in special environments and special fields.

tensorlayer - Deep Learning and Reinforcement Learning Library for Developers and Scientists

  •    Python

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides a large collection of customizable neural layers / functions that are key to build real-world AI applications. TensorLayer is awarded the 2017 Best Open Source Software by the ACM Multimedia Society. Simplicity : TensorLayer lifts the low-level dataflow interface of TensorFlow to high-level layers / models. It is very easy to learn through the rich example codes contributed by a wide community.

self-driving-car-sim - A self-driving car simulator built with Unity

  •    CSharp

This simulator was built for Udacity's Self-Driving Car Nanodegree, to teach students how to train cars how to navigate road courses using deep learning. See more project details here. All the assets in this repository require Unity. Please follow the instructions below for the full setup.

vehicle-detection - Vehicle detection using machine learning and computer vision techniques for Udacity's Self-Driving Car Engineer Nanodegree

  •    Jupyter

Vehicle detection using these machine learning and computer vision techniques. First, you need to get training data(cars and not-cars). You can get car images from GTI vehicle image database, KITTI vision benchmark). And over 1500 images per each is good for this project.

awesome-robotic-tooling - Tooling for professional robotic development in C++ and Python with a touch of ROS, autonomous driving and aerospace: https://freerobotics

  •    

To stop reinventing the wheel you need to know about the wheel. This list is an attempt to show the variety of open and free tools in software and hardware development, which are useful in professional robotic development. Your contribution is necessary to keep this list alive, increase the quality and to expand it. You can read more about it's origin and how you can participate in the contribution guide and related blog post. All new project entries will have a tweet from protontypes.

ai-resources - Selection of resources to learn Artificial Intelligence / Machine Learning / Statistical Inference / Deep Learning / Reinforcement Learning

  •    

Update April 2017: It’s been almost a year since I posted this list of resources, and over the year there’s been an explosion of articles, videos, books, tutorials etc on the subject — even an explosion of ‘lists of resources’ such as this one. It’s impossible for me to keep this up to date. However, the one resource I would like to add is https://ml4a.github.io/ (https://github.com/ml4a) led by Gene Kogan. It’s specifically aimed at artists and the creative coding community. This is a very incomplete and subjective selection of resources to learn about the algorithms and maths of Artificial Intelligence (AI) / Machine Learning (ML) / Statistical Inference (SI) / Deep Learning (DL) / Reinforcement Learning (RL). It is aimed at beginners (those without Computer Science background and not knowing anything about these subjects) and hopes to take them to quite advanced levels (able to read and understand DL papers). It is not an exhaustive list and only contains some of the learning materials that I have personally completed so that I can include brief personal comments on them. It is also by no means the best path to follow (nowadays most MOOCs have full paths all the way from basic statistics and linear algebra to ML/DL). But this is the path I took and in a sense it's a partial documentation of my personal journey into DL (actually I bounced around all of these back and forth like crazy). As someone who has no formal background in Computer Science (but has been programming for many years), the language, notation and concepts of ML/SI/DL and even CS was completely alien to me, and the learning curve was not only steep, but vertical, treacherous and slippery like ice.

Accord.NET - Machine learning, Computer vision, Statistics and general scientific computing for .NET

  •    CSharp

The Accord.NET project provides machine learning, statistics, artificial intelligence, computer vision and image processing methods to .NET. It can be used on Microsoft Windows, Xamarin, Unity3D, Windows Store applications, Linux or mobile.

pytorch-dense-correspondence - Code for "Dense Object Nets: Learning Dense Visual Object Descriptors By and For Robotic Manipulation"

  •    Python

Abstract: What is the right object representation for manipulation? We would like robots to visually perceive scenes and learn an understanding of the objects in them that (i) is task-agnostic and can be used as a building block for a variety of manipulation tasks, (ii) is generally applicable to both rigid and non-rigid objects, (iii) takes advantage of the strong priors provided by 3D vision, and (iv) is entirely learned from self-supervision. This is hard to achieve with previous methods: much recent work in grasping does not extend to grasping specific objects or other tasks, whereas task-specific learning may require many trials to generalize well across object configurations or other tasks. In this paper we present Dense Object Nets, which build on recent developments in self-supervised dense descriptor learning, as a consistent object representation for visual understanding and manipulation. We demonstrate they can be trained quickly (approximately 20 minutes) for a wide variety of previously unseen and potentially non-rigid objects. We additionally present novel contributions to enable multi-object descriptor learning, and show that by modifying our training procedure, we can either acquire descriptors which generalize across classes of objects, or descriptors that are distinct for each object instance. Finally, we demonstrate the novel application of learned dense descriptors to robotic manipulation. We demonstrate grasping of specific points on an object across potentially deformed object configurations, and demonstrate using class general descriptors to transfer specific grasps across objects in a class. To prevent the repo from growing in size, recommend always "restart and clear outputs" before committing any Jupyter notebooks. If you'd like to save what your notebook looks like, you can always "download as .html", which is a great way to snapshot the state of that notebook and share.

Applying_EANNs - A 2D Unity simulation in which cars learn to navigate themselves through different courses

  •    ASP

Cars have to navigate through a course without touching the walls or any other obstacles of the course. A car has five front-facing sensors which measure the distance to obstacles in a given direction. The readings of these sensors serve as the input of the car's neural network. Each sensor points into a different direction, covering a front facing range of approximately 90 degrees. The maximum range of a sensor is 10 unity units. The output of the Neural Network then determines the car’s current engine and turning force. If you would like to tinker with the parameters of the simulation, you can do so in the Unity Editor. If you would simply like to run the simulation with default parameters, you can start the built file [Builds/Applying EANNs.exe](Builds/Applying EANNs.exe).

habitat-lab - A modular high-level library to train embodied AI agents across a variety of tasks, environments, and simulators

  •    Python

Habitat Lab is a modular high-level library for end-to-end development in embodied AI -- defining embodied AI tasks (e.g. navigation, instruction following, question answering), configuring embodied agents (physical form, sensors, capabilities), training these agents (via imitation or reinforcement learning, or no learning at all as in classical SLAM), and benchmarking their performance on the defined tasks using standard metrics. Habitat Lab currently uses Habitat-Sim as the core simulator, but is designed with a modular abstraction for the simulator backend to maintain compatibility over multiple simulators. For documentation refer here.

SerpentAI - Game Agent Framework. Helping you create AIs / Bots to play any game you own!

  •    Jupyter

The framework features a large assortment of supporting modules that provide solutions to commonly encountered scenarios when using video games as environments as well as CLI tools to accelerate development. It provides some useful conventions but is absolutely NOT opiniated about what you put in your agents: Want to use the latest, cutting-edge deep reinforcement learning algorithm? ALLOWED. Want to use computer vision techniques, image processing and trigonometry? ALLOWED. Want to randomly press the Left or Right buttons? sigh ALLOWED. To top it all off, Serpent.AI was designed to be entirely plugin-based (for both game support and game agents) so your experiments are actually portable and distributable to your peers and random strangers on the Internet. You'll also be glad to hear that all 3 major OSes are supported: Linux, Windows & macOS.






We have large collection of open source products. Follow the tags from Tag Cloud >>


Open source products are scattered around the web. Please provide information about the open source projects you own / you use. Add Projects.