minimal-datascience - This repository contains all the code and dataset used in my blog series: Minimal Data Science

  •        37

My goal for this minimal data science blog series is not only sharing, tutorializing, but also, making personal notes while learning and working as a Data Scientist. Iā€™m looking forward to receiving any feedback from you. Chapter-1: Classify StarCraft 2 players with Python Pandas and Scikit-learn.

http://lenguyenthedat.com
https://github.com/lenguyenthedat/minimal-datascience

Tags
Implementation
License
Platform

   




Related Projects

benchm-ml - A minimal benchmark for scalability, speed and accuracy of commonly used open source implementations (R packages, Python scikit-learn, H2O, xgboost, Spark MLlib etc

  •    R

This project aims at a minimal benchmark for scalability, speed and accuracy of commonly used implementations of a few machine learning algorithms. The target of this study is binary classification with numeric and categorical inputs (of limited cardinality i.e. not very sparse) and no missing data, perhaps the most common problem in business applications (e.g. credit scoring, fraud detection or churn prediction). If the input matrix is of n x p, n is varied as 10K, 100K, 1M, 10M, while p is ~1K (after expanding the categoricals into dummy variables/one-hot encoding). This particular type of data structure/size (the largest) stems from this author's interest in some particular business applications. Note: While a large part of this benchmark was done in Spring 2015 reflecting the state of ML implementations at that time, this repo is being updated if I see significant changes in implementations or new implementations have become widely available (e.g. lightgbm). Also, please find a summary of the progress and learnings from this benchmark at the end of this repo.

scikit-learn-videos - Jupyter notebooks from the scikit-learn video series

  •    Jupyter

This video series will teach you how to solve machine learning problems using Python's popular scikit-learn library. It was featured on Kaggle's blog in 2015. There are 9 video tutorials totaling 4 hours, each with a corresponding Jupyter notebook. The notebook contains everything you see in the video: code, output, images, and comments.

tpot - A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming

  •    Python

Consider TPOT your Data Science Assistant. TPOT is a Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.TPOT will automate the most tedious part of machine learning by intelligently exploring thousands of possible pipelines to find the best one for your data.


practical-machine-learning-with-python - Master the essential skills needed to recognize and solve complex real-world problems with Machine Learning and Deep Learning by leveraging the highly popular Python Machine Learning Eco-system

  •    Jupyter

"Data is the new oil" is a saying which you must have heard by now along with the huge interest building up around Big Data and Machine Learning in the recent past along with Artificial Intelligence and Deep Learning. Besides this, data scientists have been termed as having "The sexiest job in the 21st Century" which makes it all the more worthwhile to build up some valuable expertise in these areas. Getting started with machine learning in the real world can be overwhelming with the vast amount of resources out there on the web. "Practical Machine Learning with Python" follows a structured and comprehensive three-tiered approach packed with concepts, methodologies, hands-on examples, and code. This book is packed with over 500 pages of useful information which helps its readers master the essential skills needed to recognize and solve complex problems with Machine Learning and Deep Learning by following a data-driven mindset. By using real-world case studies that leverage the popular Python Machine Learning ecosystem, this book is your perfect companion for learning the art and science of Machine Learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute Machine Learning systems and projects successfully.

awesome-datascience - :memo: An awesome Data Science repository to learn and apply for real world problems

  •    

An open source Data Science repository to learn and apply towards solving real world problems. First of all, Data Science is one of the hottest topics on the Computer and Internet farmland nowadays. People have gathered data from applications and systems until today and now is the time to analyze them. The next steps are producing suggestions from the data and creating predictions about the future. Here you can find the biggest question for Data Science and hundreds of answers from experts. Our favorite data scientist is Clare Corthell. She is an expert in data-related systems and a hacker, and has been working on a company as a data scientist. Clare's blog. This website helps you to understand the exact way to study as a professional data scientist.

auto_ml - Automated machine learning for analytics & production

  •    Python

auto_ml is designed for production. Here's an example that includes serializing and loading the trained model, then getting predictions on single dictionaries, roughly the process you'd likely follow to deploy the trained model. All of these projects are ready for production. These projects all have prediction time in the 1 millisecond range for a single prediction, and are able to be serialized to disk and loaded into a new environment after training.

python-machine-learning-book - The "Python Machine Learning (1st edition)" book code repository and info resource

  •    Jupyter

This GitHub repository contains the code examples of the 1st Edition of Python Machine Learning book. If you are looking for the code examples of the 2nd Edition, please refer to this repository instead. What you can expect are 400 pages rich in useful material just about everything you need to know to get started with machine learning ... from theory to the actual code that you can directly put into action! This is not yet just another "this is how scikit-learn works" book. I aim to explain all the underlying concepts, tell you everything you need to know in terms of best practices and caveats, and we will put those concepts into action mainly using NumPy, scikit-learn, and Theano.

mlcourse_open - OpenDataScience Machine Learning course. Both in English and Russian

  •    Python

This is the list of published articles on medium.com šŸ‡¬šŸ‡§, habr.com šŸ‡·šŸ‡ŗ, and jqr.com šŸ‡ØšŸ‡³. Icons are clickable. Also, links to Kaggle Kernels (in English) are given. This way one can reproduce everything without installing a single package. Assignments will be announced each week. Meanwhile, you can pratice with demo versions. Solutions will be discussed in the upcoming run of the course.

Math-of-Machine-Learning-Course-by-Siraj - Implements common data science methods and machine learning algorithms from scratch in python

  •    Jupyter

This repository was initially created to submit machine learning assignments for Siraj Raval's online machine learning course. The purpose of the course was to learn how to implement the most common machine learning algorithms from scratch (without using machine learning libraries such as tensorflow, PyTorch, scikit-learn, etc). Although that course has ended now, I am continuing to learn data science and machine learning from other sources such as Coursera, online blogs, and attending machine learning lectures at University of Toronto. Sticking to the theme of implementing machine learning algortihms from scratch, I will continue to post detailed notebooks in python here as I learn more.

scikit-plot - An intuitive library to add plotting functionality to scikit-learn objects.

  •    Python

Scikit-plot is the result of an unartistic data scientist's dreadful realization that visualization is one of the most crucial components in the data science process, not just a mere afterthought. Gaining insights is simply a lot easier when you're looking at a colored heatmap of a confusion matrix complete with class labels rather than a single-line dump of numbers enclosed in brackets. Besides, if you ever need to present your results to someone (virtually any time anybody hires you to do data science), you show them visualizations, not a bunch of numbers in Excel.

dive-into-machine-learning - Dive into Machine Learning with Python Jupyter notebook and scikit-learn!

  •    

I learned Python by hacking first, and getting serious later. I wanted to do this with Machine Learning. If this is your style, join me in getting a bit ahead of yourself. I suggest you get your feet wet ASAP. You'll boost your confidence.

Deep-Learning-Boot-Camp - A community run, 5-day PyTorch Deep Learning Bootcamp

  •    Jupyter

Tel-Aviv Deep Learning Bootcamp is an intensive (and free!) 5-day program intended to teach you all about deep learning. It is nonprofit focused on advancing data science education and fostering entrepreneurship. The Bootcamp is a prominent venue for graduate students, researchers, and data science professionals. It offers a chance to study the essential and innovative aspects of deep learning. Participation is via a donation to the A.L.S ASSOCIATION for promoting research of the Amyotrophic Lateral Sclerosis (ALS) disease.

rumale - Rumale is a machine learning library in Ruby

  •    Ruby

Rumale (Ruby machine learning) is a machine learning library in Ruby. Rumale provides machine learning algorithms with interfaces similar to Scikit-Learn in Python. Rumale supports Linear / Kernel Support Vector Machine, Logistic Regression, Linear Regression, Ridge, Lasso, Kernel Ridge, Factorization Machine, Naive Bayes, Decision Tree, AdaBoost, Gradient Tree Boosting, Random Forest, Extra-Trees, K-nearest neighbor classifier, K-Means, K-Medoids, Gaussian Mixture Model, DBSCAN, SNN, Power Iteration Clustering, Mutidimensional Scaling, t-SNE, Principal Component Analysis, Kernel PCA and Non-negative Matrix Factorization. This project was formerly known as "SVMKit". If you are using SVMKit, please install Rumale and replace SVMKit constants with Rumale.

DataScienceR - a curated list of R tutorials for Data Science, NLP and Machine Learning

  •    R

This repo contains a curated list of R tutorials and packages for Data Science, NLP and Machine Learning. This also serves as a reference guide for several common data analysis tasks. Curated list of Python tutorials for Data Science, NLP and Machine Learning.

deepLearningBook-Notes - Notes on the Deep Learning book from Ian Goodfellow, Yoshua Bengio and Aaron Courville (2016)

  •    Jupyter

This content is part of a series following the chapter 2 on linear algebra from the Deep Learning Book by Goodfellow, I., Bengio, Y., and Courville, A. (2016). It aims to provide intuitions/drawings/python code on mathematical theories and is constructed as my understanding of these concepts. I'd like to introduce a series of blog posts and their corresponding Python Notebooks gathering notes on the Deep Learning Book from Ian Goodfellow, Yoshua Bengio, and Aaron Courville (2016). The aim of these notebooks is to help beginners/advanced beginners to grasp linear algebra concepts underlying deep learning and machine learning. Acquiring these skills can boost your ability to understand and apply various data science algorithms. In my opinion, it is one of the bedrock of machine learning, deep learning and data science.

palladium - Framework for setting up predictive analytics services

  •    Python

Palladium provides means to easily set up predictive analytics services as web services. It is a pluggable framework for developing real-world machine learning solutions. It provides generic implementations for things commonly needed in machine learning, such as dataset loading, model training with parameter search, a web service, and persistence capabilities, allowing you to concentrate on the core task of developing an accurate machine learning model. Having a well-tested core framework that is used for a number of different services can lead to a reduction of costs during development and maintenance due to harmonization of different services being based on the same code base and identical processes. Palladium has a web service overhead of a few milliseconds only, making it possible to set up services with low response times. A configuration file lets you conveniently tie together existing components with components that you developed. As an example, if what you want to do is to develop a model where you load a dataset from a CSV file or an SQL database, and train an SVM classifier to predict one of the rows in the data given the others, and then find out about your model's accuracy, then that's what Palladium allows you to do without writing a single line of code. However, it is also possible to independently integrate own solutions.