intro-to-ml - A basic introduction to machine learning (one day training).

  •        1

A workshop designed by Katharine Jarmul for learning Machine Learning with Python. Designed for a one-day training. These lessons has been tested for Python 3.6 and primarily uses the latest release of each library, except where versions are pinned. You likely can run most of the code with older releases, but if you run into an issue, try upgrading the library in question first.

https://github.com/kjam/intro-to-ml

Tags
Implementation
License
Platform

   




Related Projects

handson-ml - A series of Jupyter notebooks that walk you through the fundamentals of Machine Learning and Deep Learning in python using Scikit-Learn and TensorFlow

  •    Jupyter

First, you will need to install git, if you don't have it already. If you want to go through chapter 16 on Reinforcement Learning, you will need to install OpenAI gym and its dependencies for Atari simulations.

scikit-learn-videos - Jupyter notebooks from the scikit-learn video series

  •    Jupyter

This video series will teach you how to solve machine learning problems using Python's popular scikit-learn library. It was featured on Kaggle's blog in 2015. There are 9 video tutorials totaling 4 hours, each with a corresponding Jupyter notebook. The notebook contains everything you see in the video: code, output, images, and comments.

dive-into-machine-learning - Dive into Machine Learning with Python Jupyter notebook and scikit-learn!

  •    

I learned Python by hacking first, and getting serious later. I wanted to do this with Machine Learning. If this is your style, join me in getting a bit ahead of yourself. I suggest you get your feet wet ASAP. You'll boost your confidence.

introduction_to_ml_with_python - Notebooks and code for the book "Introduction to Machine Learning with Python"

  •    Jupyter

This repository holds the code for the forthcoming book "Introduction to Machine Learning with Python" by Andreas Mueller and Sarah Guido. You can find details about the book on the O'Reilly website. The books requires the current development version of scikit-learn, that is 0.18-dev. Most of the book can also be used with previous versions of scikit-learn, though you need to adjust the import for everything from the model_selection module, mostly cross_val_score, train_test_split and GridSearchCV.

python-machine-learning-book - The "Python Machine Learning (1st edition)" book code repository and info resource

  •    Jupyter

This GitHub repository contains the code examples of the 1st Edition of Python Machine Learning book. If you are looking for the code examples of the 2nd Edition, please refer to this repository instead. What you can expect are 400 pages rich in useful material just about everything you need to know to get started with machine learning ... from theory to the actual code that you can directly put into action! This is not yet just another "this is how scikit-learn works" book. I aim to explain all the underlying concepts, tell you everything you need to know in terms of best practices and caveats, and we will put those concepts into action mainly using NumPy, scikit-learn, and Theano.


Math-of-Machine-Learning-Course-by-Siraj - Implements common data science methods and machine learning algorithms from scratch in python

  •    Jupyter

This repository was initially created to submit machine learning assignments for Siraj Raval's online machine learning course. The purpose of the course was to learn how to implement the most common machine learning algorithms from scratch (without using machine learning libraries such as tensorflow, PyTorch, scikit-learn, etc). Although that course has ended now, I am continuing to learn data science and machine learning from other sources such as Coursera, online blogs, and attending machine learning lectures at University of Toronto. Sticking to the theme of implementing machine learning algortihms from scratch, I will continue to post detailed notebooks in python here as I learn more.

python-machine-learning-book-2nd-edition - The "Python Machine Learning (2nd edition)" book code repository and info resource

  •    Jupyter

Python Machine Learning, 2nd Ed. To access the code materials for a given chapter, simply click on the open dir links next to the chapter headlines to navigate to the chapter subdirectories located in the code/ subdirectory. You can also click on the ipynb links below to open and view the Jupyter notebook of each chapter directly on GitHub.

pycon-2016-tutorial - Machine Learning with Text in scikit-learn

  •    Jupyter

Presented by Kevin Markham at PyCon on May 28, 2016. Watch the complete tutorial video on YouTube. Although numeric data is easy to work with in Python, most knowledge created by humans is actually raw, unstructured text. By learning how to transform text into data that is usable by machine learning models, you drastically increase the amount of data that your models can learn from. In this tutorial, we'll build and evaluate predictive models from real-world text using scikit-learn.

practical-machine-learning-with-python - Master the essential skills needed to recognize and solve complex real-world problems with Machine Learning and Deep Learning by leveraging the highly popular Python Machine Learning Eco-system

  •    Jupyter

"Data is the new oil" is a saying which you must have heard by now along with the huge interest building up around Big Data and Machine Learning in the recent past along with Artificial Intelligence and Deep Learning. Besides this, data scientists have been termed as having "The sexiest job in the 21st Century" which makes it all the more worthwhile to build up some valuable expertise in these areas. Getting started with machine learning in the real world can be overwhelming with the vast amount of resources out there on the web. "Practical Machine Learning with Python" follows a structured and comprehensive three-tiered approach packed with concepts, methodologies, hands-on examples, and code. This book is packed with over 500 pages of useful information which helps its readers master the essential skills needed to recognize and solve complex problems with Machine Learning and Deep Learning by following a data-driven mindset. By using real-world case studies that leverage the popular Python Machine Learning ecosystem, this book is your perfect companion for learning the art and science of Machine Learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute Machine Learning systems and projects successfully.

ML-Tutorial-Experiment - Coding the Machine Learning Tutorial for Learning to Learn

  •    Jupyter

Coding the Machine Learning Tutorial for Learning to Learn

tensorwatch - Debugging, monitoring and visualization for Deep Learning and Reinforcement Learning

  •    Jupyter

TensorWatch is a debugging and visualization tool designed for deep learning and reinforcement learning. It fully leverages Jupyter Notebook to show real time visualizations and offers unique capabilities to query the live training process without having to sprinkle logging statements all over. You can also use TensorWatch to build your own UIs and dashboards. In addition, TensorWatch leverages several excellent libraries for visualizing model graph, review model statistics, explain prediction and so on. TensorWatch is under heavy development with a goal of providing a research platform for debugging machine learning in one easy to use, extensible and hackable package.

Coursera-Machine-Learning - Coursera Machine Learning - Python code

  •    Jupyter

This repository contains python implementations of certain exercises from the course by Andrew Ng. For a number of assignments in the course you are instructed to create complete, stand-alone Octave/MATLAB implementations of certain algorithms (Linear and Logistic Regression for example). The rest of the assignments depend on additional code provided by the course authors. For most of the code in this repository I have instead used existing Python implementations like Scikit-learn.

skll - SciKit-Learn Laboratory (SKLL) makes it easy to run machine learning experiments.

  •    Python

This Python package provides command-line utilities to make it easier to run machine learning experiments with scikit-learn. One of the primary goals of our project is to make it so that you can run scikit-learn experiments without actually needing to write any code other than what you used to generate/extract the features. For more information about getting started with run_experiment, please check out our tutorial, or our config file specs.

t81_558_deep_learning - Washington University (in St

  •    Jupyter

Deep learning is a group of exciting new technologies for neural networks. Through a combination of advanced training techniques and neural network architectural components, it is now possible to create neural networks of much greater complexity. Deep learning allows a neural network to learn hierarchies of information in a way that is like the function of the human brain. This course will introduce the student to computer vision with Convolution Neural Networks (CNN), time series analysis with Long Short-Term Memory (LSTM), classic neural network structures and application to computer security. High Performance Computing (HPC) aspects will demonstrate how deep learning can be leveraged both on graphical processing units (GPUs), as well as grids. Focus is primarily upon the application of deep learning to problems, with some introduction mathematical foundations. Students will use the Python programming language to implement deep learning using Google TensorFlow and Keras. It is not necessary to know Python prior to this course; however, familiarity of at least one programming language is assumed. This course will be delivered in a hybrid format that includes both classroom and online instruction. This syllabus presents the expected class schedule, due dates, and reading assignments. Download current syllabus.

pomegranate - Fast, flexible and easy to use probabilistic modelling in Python.

  •    Jupyter

JMLR-MLOSS Manuscript Please consider citing it if you used it in your academic work. pomegranate is a package for probabilistic models in Python that is implemented in cython for speed. It's focus is on merging the easy-to-use scikit-learn API with the modularity that comes with probabilistic modeling to allow users to specify complicated models without needing to worry about implementation details. The models are built from the ground up with big data processing in mind and so natively support features like out-of-core learning and parallelism.





We have large collection of open source products. Follow the tags from Tag Cloud >>


Open source products are scattered around the web. Please provide information about the open source projects you own / you use. Add Projects.