ConvNetJS - Javascript implementation of Neural networks

  •        474

ConvNetJS is a Javascript implementation of Neural networks, It currently supports Common Neural Network modules, Classification (SVM/Softmax) and Regression (L2) cost functions, A MagicNet class for fully automatic neural network learning (automatic hyperparameter search and cross-validatations), Ability to specify and train Convolutional Networks that process images, An experimental Reinforcement Learning module, based on Deep Q Learning.

http://cs.stanford.edu/people/karpathy/convnetjs/
https://github.com/karpathy/convnetjs

Tags
Implementation
License
Platform

   




Related Projects

Accord.NET - Machine learning, Computer vision, Statistics and general scientific computing for .NET


The Accord.NET project provides machine learning, statistics, artificial intelligence, computer vision and image processing methods to .NET. It can be used on Microsoft Windows, Xamarin, Unity3D, Windows Store applications, Linux or mobile.

CNTK - Computational Network Toolkit (CNTK)


The Microsoft Cognitive Toolkit is a free, easy-to-use, open-source, commercial-grade toolkit that trains deep learning algorithms to learn like the human brain. It is a unified deep-learning toolkit that describes neural networks as a series of computational steps via a directed graph.

gorgonia - Gorgonia is a library that helps facilitate machine learning in Go.


Gorgonia is a library that helps facilitate machine learning in Go. Write and evaluate mathematical equations involving multidimensional arrays easily. If this sounds like Theano or TensorFlow, it's because the idea is quite similar. Specifically, the library is pretty low-level, like Theano, but has higher goals like Tensorflow.The main reason to use Gorgonia is developer comfort. If you're using a Go stack extensively, now you have access to the ability to create production-ready machine learning systems in an environment that you are already familiar and comfortable with.

DeepDetect - Deep Learning Server


DeepDetect is an Instant Machine Learning for your Applications. It can classify images, text and numerical data from your application or the command line by series of simple calls to the deep learning server. A simple yet powerful and generic API for use of Machine Learning.

H2O - Fast Scalable Machine Learning API For Smarter Applications


H2O is for data scientists and application developers who need fast, in-memory scalable machine learning for smarter applications. H2O is an open source parallel processing engine for machine learning. Unlike traditional analytics tools, H2O provides a combination of extraordinary math, a high performance parallel architecture, and unrivaled ease of use.


incubator-mxnet - Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more


Apache MXNet (incubating) is a deep learning framework designed for both efficiency and flexibility. It allows you to mix symbolic and imperative programming to maximize efficiency and productivity. At its core, MXNet contains a dynamic dependency scheduler that automatically parallelizes both symbolic and imperative operations on the fly. A graph optimization layer on top of that makes symbolic execution fast and memory efficient. MXNet is portable and lightweight, scaling effectively to multiple GPUs and multiple machines.MXNet is also more than a deep learning project. It is also a collection of blue prints and guidelines for building deep learning systems, and interesting insights of DL systems for hackers.

Apache Singa - Distributed Deep Learning Platform


SINGA is a distributed deep learning platform for big data analytics. It supports various deep learning models, and thus has the flexibility to allow users to customize the models that fit their business requirements. It provides a scalable architecture to train deep learning models from huge volumes of data and it makes the distributed training process transparent to users.

dll - Deep Learning Library (DLL) for C++ (ANNs, CNNs, RBMs, DBNs...)


DLL is a library that aims to provide a C++ implementation of Restricted Boltzmann Machine (RBM) and Deep Belief Network (DBN) and their convolution versions as well. It also has support for some more standard neural networks. Note: When you clone the library, you need to clone the sub modules as well, using the --recursive option.

Caffe - Deep Learning Framework from Berkley Vision


Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by the Berkeley Vision and Learning Center (BVLC) and by community contributors.

MXNet - A Deep Learning Framework


MXNet is an open-source deep learning framework that allows you to define, train, and deploy deep neural networks on a wide array of devices, from cloud infrastructure to mobile devices. It is highly scalable, allowing for fast model training, and supports a flexible programming model and multiple languages. MXNet allows you to mix symbolic and imperative programming flavors to maximize both efficiency and productivity.

TensorFlow - Artificial Intelligence Library from Google


TensorFlow is a library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) that flow between them. This flexible architecture lets you deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device without rewriting code.

Kur - Descriptive Deep Learning


Kur is a system for quickly building and applying state-of-the-art deep learning models to new and exciting problems. Kur was designed to appeal to the entire machine learning community, from novices to veterans. It uses specification files that are simple to read and author, meaning that you can get started building sophisticated models without ever needing to code. Even so, Kur exposes a friendly and extensible API to support advanced deep learning architectures or workflows.

ai-resources - Selection of resources to learn Artificial Intelligence / Machine Learning / Statistical Inference / Deep Learning / Reinforcement Learning


Update April 2017: It’s been almost a year since I posted this list of resources, and over the year there’s been an explosion of articles, videos, books, tutorials etc on the subject — even an explosion of ‘lists of resources’ such as this one. It’s impossible for me to keep this up to date. However, the one resource I would like to add is https://ml4a.github.io/ (https://github.com/ml4a) led by Gene Kogan. It’s specifically aimed at artists and the creative coding community. This is a very incomplete and subjective selection of resources to learn about the algorithms and maths of Artificial Intelligence (AI) / Machine Learning (ML) / Statistical Inference (SI) / Deep Learning (DL) / Reinforcement Learning (RL). It is aimed at beginners (those without Computer Science background and not knowing anything about these subjects) and hopes to take them to quite advanced levels (able to read and understand DL papers). It is not an exhaustive list and only contains some of the learning materials that I have personally completed so that I can include brief personal comments on them. It is also by no means the best path to follow (nowadays most MOOCs have full paths all the way from basic statistics and linear algebra to ML/DL). But this is the path I took and in a sense it's a partial documentation of my personal journey into DL (actually I bounced around all of these back and forth like crazy). As someone who has no formal background in Computer Science (but has been programming for many years), the language, notation and concepts of ML/SI/DL and even CS was completely alien to me, and the learning curve was not only steep, but vertical, treacherous and slippery like ice.

DeepLearning.scala - A simple library for creating complex neural networks


DeepLearning.scala is a simple library for creating complex neural networks from object-oriented and functional programming constructs. Like other deep learning toolkits, DeepLearning.scala allows you to build neural networks from mathematical formulas. It supports floats, doubles, GPU-accelerated N-dimensional arrays, and calculates derivatives of the weights in the formulas.

chainer - A flexible framework of neural networks for deep learning


Chainer is a Python-based deep learning framework aiming at flexibility. It provides automatic differentiation APIs based on the define-by-run approach (a.k.a. dynamic computational graphs) as well as object-oriented high-level APIs to build and train neural networks. It also supports CUDA/cuDNN using CuPy for high performance training and inference. For more details of Chainer, see the documents and resources listed above and join the community in Forum, Slack, and Twitter. The stable version of current Chainer is separated in here: v3.

ABAGAIL - The library contains a number of interconnected Java packages that implement machine learning and artificial intelligence algorithms


The library contains a number of interconnected Java packages that implement machine learning and artificial intelligence algorithms. These are artificial intelligence algorithms implemented for the kind of people that like to implement algorithms themselves. See Issues page.

Bender - Easily craft fast Neural Networks on iOS! Use TensorFlow models. Metal under the hood.


Bender is an abstraction layer over MetalPerformanceShaders useful for working with neural networks. Bender is an abstraction layer over MetalPerformanceShaders which is used to work with neural networks. It is of growing interest in the AI environment to execute neural networks on mobile devices even if the training process has been done previously. We want to make it easier for everyone to execute pretrained networks on iOS.