FGMachine - Future Gadget Machine

  •        3

FGLab is a machine learning dashboard, designed to make prototyping experiments easier. Experiment details and results are sent to a database, which allows analytics to be performed after their completion. The server is FGLab, and the clients are FGMachines. FGMachine tries to follow the SemVer standard whenever possible. Releases can be found here.

https://github.com/Kaixhin/FGMachine

Dependencies:

bluebird : ^3.5.1
body-parser : ^1.18.2
bytes : ^2.5.0
chokidar : ^1.7.0
cors : ^2.8.3
dotenv : ^4.0.0
express : ^5.0.0-alpha.6
lodash : ^4.17.5
morgan : ^1.9.0
mz : ^2.7.0
request : ^2.83.0
request-promise : ^4.2.2
rimraf : ^2.6.2
ws : ^1.1.5

Tags
Implementation
License
Platform

   




Related Projects

ReScience - The ReScience journal. Reproducible Science is Good. Replicated Science is better.

  •    

ReScience is a peer-reviewed journal that targets computational research and encourages the explicit replication of already published research promoting new and open-source implementations in order to ensure the original research is reproducible. To achieve such a goal, the whole editing chain is radically different from any other traditional scientific journal. ReScience lives on github where each new implementation is made available together with the comments, explanations and tests. Each submission takes the form of a pull request that is publicly reviewed and tested in order to guarantee any researcher can re-use it. If you ever replicated computational result from the literature, ReScience is the perfect place to publish this new implementation. Reproducible Science is Good. Replicated Science is better.

polyaxon - An open source platform for reproducible machine learning and deep learning on kubernetes

  •    Python

Welcome to Polyaxon, a platform for building, training, and monitoring large scale deep learning applications. Polyaxon deploys into any data center, cloud provider, or can be hosted and managed by Polyaxon, and it supports all the major deep learning frameworks such as Tensorflow, MXNet, Caffe, Torch, etc.

labnotebook - LabNotebook is a tool that allows you to flexibly monitor, record, save, and query all your machine learning experiments

  •    Jupyter

All you need to do is to modify your code to include labnotebook.start_experiment() and labnotebook.stop_experiment() and pass the info you would like to save to the database as arguments. As an option, you can save information for each training step by using labnotebook.step_experiment(). You can see a very simple example notebook here.

nextflow - A DSL for data-driven computational pipelines

  •    Groovy

With the rise of big data, techniques to analyse and run experiments on large datasets are increasingly necessary. Parallelization and distributed computing are the best ways to tackle this kind of problem, but the tools commonly available to the bioinformatics community traditionally lack good support for these techniques, or provide a model that fits badly with the specific requirements in the bioinformatics domain and, most of the time, require the knowledge of complex tools or low-level APIs.


datascience-box - Data Science Course in a Box

  •    HTML

This introductory data science course that is our (working) answer to these questions. The courses focuses on data acquisition and wrangling, exploratory data analysis, data visualization, and effective communication and approaching statistics from a model-based, instead of an inference-based, perspective. A heavy emphasis is placed on a consitent syntax (with tools from the tidyverse), reproducibility (with R Markdown) and version control and collaboration (with git/GitHub). We help ease the learning curve by avoiding local installation and supplementing out-of-class learning with interactive tools (like learnr tutorials). By the end of the semester teams of students work on fully reproducible data analysis projects on data they acquired, answering questions they care about. This repository serves as a "data science course in a box" containing all materials required to teach (or learn from) the course described above.

fma - FMA: A Dataset For Music Analysis

  •    Jupyter

Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, Xavier Bresson, EPFL LTS2. The dataset is a dump of the Free Music Archive (FMA), an interactive library of high-quality, legal audio downloads. Below the abstract from the paper.

dvc - ⚡️ML models version control, make them shareable and reproducible

  •    Python

It aims to replace tools like Excel and Docs that are being commonly used as a knowledge repo and a ledger for the team, ad-hoc scripts to track and move deploy different model versions, ad-hoc data file suffixes and prefixes. DVC is compatible with Git for storing code and the dependency graph (DAG), but not data files cache. To store and share data files cache DVC supports remotes - any cloud (S3, Azure, Google Cloud, etc) or any on-premise network storage (via SSH, for example).

rep - Machine Learning toolbox for Humans

  •    Jupyter

REP is ipython-based environment for conducting data-driven research in a consistent and reproducible way. REP is not trying to substitute scikit-learn, but extends it and provides better user experience.

singularity - Singularity: Application containers for Linux

  •    Go

Singularity is an open source container platform designed to be simple, fast, and secure. Singularity is optimized for EPC and HPC workloads, allowing untrusted users to run untrusted containers in a trusted way. Check out who is using Singularity and some use cases of Singularity on our website.

bsuite - bsuite is a collection of carefully-designed experiments that investigate core capabilities of a reinforcement learning (RL) agent

  •    Python

bsuite is a collection of carefully-designed experiments that investigate core capabilities of a reinforcement learning (RL) agent with two main objectives. This library automates evaluation and analysis of any agent on these benchmarks. It serves to facilitate reproducible, and accessible, research on the core issues in RL, and ultimately the design of superior learning algorithms.

Deep-Learning-Boot-Camp - A community run, 5-day PyTorch Deep Learning Bootcamp

  •    Jupyter

Tel-Aviv Deep Learning Bootcamp is an intensive (and free!) 5-day program intended to teach you all about deep learning. It is nonprofit focused on advancing data science education and fostering entrepreneurship. The Bootcamp is a prominent venue for graduate students, researchers, and data science professionals. It offers a chance to study the essential and innovative aspects of deep learning. Participation is via a donation to the A.L.S ASSOCIATION for promoting research of the Amyotrophic Lateral Sclerosis (ALS) disease.

ITK - Insight Segmentation and Registration Toolkit -- Mirror

  •    C++

The National Library of Medicine Insight Segmentation and Registration Toolkit (ITK), or Insight Toolkit, is an open-source, cross-platform C++ toolkit for segmentation and registration. Segmentation is the process of identifying and classifying data found in a digitally sampled representation. Typically the sampled representation is an image acquired from such medical instrumentation as CT or MRI scanners. Registration is the task of aligning or developing correspondences between data. For example, in the medical environment, a CT scan may be aligned with a MRI scan in order to combine the information contained in both. The toolkit may be built from source using CMake.

machine-learning-with-ruby - Curated list: Resources for machine learning in Ruby.

  •    Ruby

Machine Learning is a field of Computational Science - often nested under AI research - with many practical applications due to the ability of resulting algorithms to systematically implement a specific solution without explicit programmer's instructions. Obviously many algorithms need a definition of features to look at or a biggish training set of data to derive the solution from. This curated list comprises awesome libraries, data sources, tutorials and presentations about Machine Learning utilizing the Ruby programming language.

open-solution-home-credit - Open solution to the Home Credit Default Risk challenge :house_with_garden:

  •    Python

This is an open solution to the Home Credit Default Risk challenge 🏡. In this open source solution you will find references to the neptune.ml. It is free platform for community Users, which we use daily to keep track of our experiments. Please note that using neptune.ml is not necessary to proceed with this solution. You may run it as plain Python script 🐍.

practical-machine-learning-with-python - Master the essential skills needed to recognize and solve complex real-world problems with Machine Learning and Deep Learning by leveraging the highly popular Python Machine Learning Eco-system

  •    Jupyter

"Data is the new oil" is a saying which you must have heard by now along with the huge interest building up around Big Data and Machine Learning in the recent past along with Artificial Intelligence and Deep Learning. Besides this, data scientists have been termed as having "The sexiest job in the 21st Century" which makes it all the more worthwhile to build up some valuable expertise in these areas. Getting started with machine learning in the real world can be overwhelming with the vast amount of resources out there on the web. "Practical Machine Learning with Python" follows a structured and comprehensive three-tiered approach packed with concepts, methodologies, hands-on examples, and code. This book is packed with over 500 pages of useful information which helps its readers master the essential skills needed to recognize and solve complex problems with Machine Learning and Deep Learning by following a data-driven mindset. By using real-world case studies that leverage the popular Python Machine Learning ecosystem, this book is your perfect companion for learning the art and science of Machine Learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute Machine Learning systems and projects successfully.

Math-of-Machine-Learning-Course-by-Siraj - Implements common data science methods and machine learning algorithms from scratch in python

  •    Jupyter

This repository was initially created to submit machine learning assignments for Siraj Raval's online machine learning course. The purpose of the course was to learn how to implement the most common machine learning algorithms from scratch (without using machine learning libraries such as tensorflow, PyTorch, scikit-learn, etc). Although that course has ended now, I am continuing to learn data science and machine learning from other sources such as Coursera, online blogs, and attending machine learning lectures at University of Toronto. Sticking to the theme of implementing machine learning algortihms from scratch, I will continue to post detailed notebooks in python here as I learn more.

OpenML - Open Machine Learning

  •    CSS

We are a group of people who are excited about open science, open data and machine learning. We want to make machine learning and data analysis simple, accessible, collaborative and open with an optimal division of labour between computers and humans. OpenML is an online machine learning platform for sharing and organizing data, machine learning algorithms and experiments. It is designed to create a frictionless, networked ecosystem, that you can readily integrate into your existing processes/code/environments, allowing people all over the world to collaborate and build directly on each other’s latest ideas, data and results, irrespective of the tools and infrastructure they happen to use.

edward - A probabilistic programming language in TensorFlow

  •    Jupyter

Edward is a Python library for probabilistic modeling, inference, and criticism. It is a testbed for fast experimentation and research with probabilistic models, ranging from classical hierarchical models on small data sets to complex deep probabilistic models on large data sets. Edward fuses three fields: Bayesian statistics and machine learning, deep learning, and probabilistic programming. Edward is built on top of TensorFlow. It enables features such as computational graphs, distributed training, CPU/GPU integration, automatic differentiation, and visualization with TensorBoard.