diabetes_use_case - Sample use case for Xavier AI in Healthcare conference: https://www

  •        26

Recent advances enable practitioners to break open machine learning’s “black box”. From machine learning algorithms guiding analytical tests in drug manufacture, to predictive models recommending courses of treatment, to sophisticated software that can read images better than doctors, machine learning has promised a new world of healthcare where algorithms can assist, or even outperform, professionals in consistency and accuracy, saving money and avoiding potentially life-threatening mistakes. But what if your doctor told you that you were sick but could not tell you why? Imagine a hospital that hospitalized and discharged patients but was unable to provide specific justification for these decisions. For decades, this was a roadblock for the adoption of machine learning algorithms in healthcare: they could make data-driven decisions that helped practitioners, payers, and patients, but they couldn’t tell users why those decisions were made.

https://github.com/jphall663/diabetes_use_case

Tags
Implementation
License
Platform

   




Related Projects

AIX360 - Interpretability and explainability of data and machine learning models

  •    Python

The AI Explainability 360 toolkit is an open-source library that supports interpretability and explainability of datasets and machine learning models. The AI Explainability 360 Python package includes a comprehensive set of algorithms that cover different dimensions of explanations along with proxy explainability metrics. The AI Explainability 360 interactive experience provides a gentle introduction to the concepts and capabilities by walking through an example use case for different consumer personas. The tutorials and example notebooks offer a deeper, data scientist-oriented introduction. The complete API is also available.

xai - XAI - An eXplainability toolbox for machine learning

  •    Python

XAI is a Machine Learning library that is designed with AI explainability in its core. XAI contains various tools that enable for analysis and evaluation of data and models. The XAI library is maintained by The Institute for Ethical AI & ML, and it was developed based on the 8 principles for Responsible Machine Learning. You can find the documentation at https://ethicalml.github.io/xai/index.html. You can also check out our talk at Tensorflow London where the idea was first conceived - the talk also contains an insight on the definitions and principles in this library.

DALEX - Descriptive mAchine Learning EXplanations

  •    R

Machine Learning models are widely used and have various applications in classification or regression tasks. Due to increasing computational power, availability of new data sources and new methods, ML models are more and more complex. Models created with techniques like boosting, bagging of neural networks are true black boxes. It is hard to trace the link between input variables and model outcomes. They are use because of high performance, but lack of interpretability is one of their weakest sides. In many applications we need to know, understand or prove how input variables are used in the model and what impact do they have on final model prediction. DALEX is a set of tools that help to understand how complex models are working.

mindsdb - Machine Learning in one line of code

  •    Python

MindsDB's is an Explainable AutoML framework for developers. MindsDB is an automated machine learning platform that allows anyone to gain powerful insights from their data. With MindsDB, users can get fast, accurate, and interpretable answers to any of their data questions within minutes.


shapash - 🔅 Shapash makes Machine Learning models transparent and understandable by everyone

  •    Jupyter

Shapash is a Python library which aims to make machine learning interpretable and understandable by everyone. It provides several types of visualization that display explicit labels that everyone can understand. Data Scientists can understand their models easily and share their results. End users can understand the decision proposed by a model using a summary of the most influential criteria.

Skater - Python Library for Model Interpretation/Explanations

  •    Python

Skater is a unified framework to enable Model Interpretation for all forms of model to help one build an Interpretable machine learning system often needed for real world use-cases(** we are actively working towards to enabling faithful interpretability for all forms models). It is an open source python library designed to demystify the learned structures of a black box model both globally(inference on the basis of a complete data set) and locally(inference about an individual prediction). The project was started as a research idea to find ways to enable better interpretability(preferably human interpretability) to predictive "black boxes" both for researchers and practioners. The project is still in beta phase.

captum - Model interpretability and understanding for PyTorch

  •    Python

Captum is a model interpretability and understanding library for PyTorch. Captum means comprehension in Latin and contains general purpose implementations of integrated gradients, saliency maps, smoothgrad, vargrad and others for PyTorch models. It has quick integration for models built with domain-specific libraries such as torchvision, torchtext, and others. With the increase in model complexity and the resulting lack of transparency, model interpretability methods have become increasingly important. Model understanding is both an active area of research as well as an area of focus for practical applications across industries using machine learning. Captum provides state-of-the-art algorithms, including Integrated Gradients, to provide researchers and developers with an easy way to understand which features are contributing to a model’s output.

interpretable-ml-book - Book about interpretable machine learning

  •    TeX

Explaining the decisions and behaviour of machine learning models. This book is about interpretable machine learning. Machine learning is being built into many products and processes of our daily lives, yet decisions made by machines don't automatically come with an explanation. An explanation increases the trust in the decision and in the machine learning model. As the programmer of an algorithm you want to know whether you can trust the learned model. Did it learn generalizable features? Or are there some odd artifacts in the training data which the algorithm picked up? This book will give an overview over techniques that can be used to make black boxes as transparent as possible and explain decisions. In the first chapter algorithms that produce simple, interpretable models are introduced together with instructions how to interpret the output. The later chapters focus on analyzing complex models and their decisions. In an ideal future, machines will be able to explain their decisions and make a transition into an algorithmic age more human. This books is recommended for machine learning practitioners, data scientists, statisticians and also for stakeholders deciding on the use of machine learning and intelligent algorithms.

interpret - Fit interpretable models. Explain blackbox machine learning.

  •    C++

Historically, the most intelligible models were not very accurate, and the most accurate models were not intelligible. Microsoft Research has developed an algorithm called the Explainable Boosting Machine (EBM)* which has both high accuracy and intelligibility. EBM uses modern machine learning techniques like bagging and boosting to breathe new life into traditional GAMs (Generalized Additive Models). This makes them as accurate as random forests and gradient boosted trees, and also enhances their intelligibility and editability. In addition to EBM, InterpretML also supports methods like LIME, SHAP, linear models, partial dependence, decision trees and rule lists. The package makes it easy to compare and contrast models to find the best one for your needs.

benchm-ml - A minimal benchmark for scalability, speed and accuracy of commonly used open source implementations (R packages, Python scikit-learn, H2O, xgboost, Spark MLlib etc

  •    R

This project aims at a minimal benchmark for scalability, speed and accuracy of commonly used implementations of a few machine learning algorithms. The target of this study is binary classification with numeric and categorical inputs (of limited cardinality i.e. not very sparse) and no missing data, perhaps the most common problem in business applications (e.g. credit scoring, fraud detection or churn prediction). If the input matrix is of n x p, n is varied as 10K, 100K, 1M, 10M, while p is ~1K (after expanding the categoricals into dummy variables/one-hot encoding). This particular type of data structure/size (the largest) stems from this author's interest in some particular business applications. Note: While a large part of this benchmark was done in Spring 2015 reflecting the state of ML implementations at that time, this repo is being updated if I see significant changes in implementations or new implementations have become widely available (e.g. lightgbm). Also, please find a summary of the progress and learnings from this benchmark at the end of this repo.

ml-workspace - 🛠 All-in-one web-based IDE specialized for machine learning and data science.

  •    Jupyter

The ML workspace is an all-in-one web-based IDE specialized for machine learning and data science. It is simple to deploy and gets you started within minutes to productively built ML solutions on your own machines. This workspace is the ultimate tool for developers preloaded with a variety of popular data science libraries (e.g., Tensorflow, PyTorch, Keras, Sklearn) and dev tools (e.g., Jupyter, VS Code, Tensorboard) perfectly configured, optimized, and integrated. The workspace requires Docker to be installed on your machine (📖 Installation Guide).

AutoMLPipeline

  •    Julia

AutoMLPipeline is a package that makes it trivial to create complex ML pipeline structures using simple expressions. It leverages on the built-in macro programming features of Julia to symbolically process, manipulate pipeline expressions, and makes it easy to discover optimal structures for machine learning regression and classification. Just take note that + has higher priority than |> so if you are not sure, enclose the operations inside parentheses.

ml - Machine learning tools in JavaScript

  •    Javascript

This library is a compilation of the tools developed in the mljs organization. It is mainly maintained for use in the browser. If you are working with Node.js, you might prefer to add to your dependencies only the libraries that you need, as they are usually published to npm more often. We prefix all our npm package names with ml- (eg. ml-matrix) so they are easy to find. It will be available as the global ML variable. The package is in UMD format and can be "required" within webpack or requireJS.

ML-From-Scratch - Machine Learning From Scratch

  •    Python

Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The purpose of this project is not to produce as optimized and computationally efficient algorithms as possible but rather to present the inner workings of them in a transparent and accessible way.

xlearn - High performance, easy-to-use, and scalable ML package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and command line interface

  •    C++

xLearn is a high performance, easy-to-use, and scalable machine learning package, which can be used to solve large-scale machine learning problems. xLearn is especially useful for solving machine learning problems on large-scale sparse data, which is very common in Internet services such as online advertisement and recommender systems in recent years. If you are the user of liblinear, libfm, or libffm, now xLearn is your another better choice. xLearn is developed with high-performance C++ code with careful design and optimizations. Our system is designed to maximize CPU and memory utilization, provide cache-aware computation, and support lock-free learning. By combining these insights, xLearn is 5x-13x faster compared to similar systems.

cml - ♾️ CML - Continuous Machine Learning | CI/CD for ML

  •    Javascript

What is CML? Continuous Machine Learning (CML) is an open-source CLI tool for implementing continuous integration & delivery (CI/CD) with a focus on MLOps. Use it to automate development workflows — including machine provisioning, model training and evaluation, comparing ML experiments across project history, and monitoring changing datasets. CML can help train and evaluate models — and then generate a visual report with results and metrics — automatically on every pull request.






We have large collection of open source products. Follow the tags from Tag Cloud >>


Open source products are scattered around the web. Please provide information about the open source projects you own / you use. Add Projects.