spark-nlp - Natural Language Understanding Library for Apache Spark.

  •        507

John Snow Labs Spark-NLP is a natural language processing library built on top of Apache Spark ML. It provides simple, performant & accurate NLP annotations for machine learning pipelines, that scale easily in a distributed environment. This library has been uploaded to the spark-packages repository https://spark-packages.org/package/JohnSnowLabs/spark-nlp .

https://github.com/JohnSnowLabs/spark-nlp

Tags
Implementation
License
Platform

   




Related Projects

OpenNLP - Machine learning based toolkit for the processing of natural language text

  •    Java

The Apache OpenNLP library is a machine learning based toolkit for the processing of natural language text. It supports the most common NLP tasks, such as tokenization, sentence segmentation, part-of-speech tagging, named entity extraction, chunking, parsing, and coreference resolution. These tasks are usually required to build more advanced text processing services. OpenNLP also includes maximum entropy and perceptron based machine learning.

snips-nlu - Snips Python library to extract meaning from text

  •    Python

Snips NLU (Natural Language Understanding) is a Python library that allows to parse sentences written in natural language and extracts structured information. To find out how to use Snips NLU please refer to our documentation, it will provide you with a step-by-step guide on how to use and setup our library.

prose - :book: A Golang library for text processing, including tokenization, part-of-speech tagging, and named-entity extraction

  •    Go

prose is Go library for text (primarily English at the moment) processing that supports tokenization, part-of-speech tagging, named-entity extraction, and more. The library's functionality is split into subpackages designed for modular use.See the GoDoc documentation for more information.

CoreNLP - Stanford CoreNLP: A Java suite of core NLP tools.

  •    Java

Stanford CoreNLP provides a set of natural language analysis tools which can take raw English language text input and give the base forms of words, their parts of speech, whether they are names of companies, people, etc., normalize dates, times, and numeric quantities, mark up the structure of sentences in terms of phrases and word dependencies, and indicate which noun phrases refer to the same entities. It provides the foundational building blocks for higher level text understanding applications.

treat - Natural language processing framework for Ruby.

  •    Ruby

Treat is a toolkit for natural language processing and computational linguistics in Ruby. The Treat project aims to build a language- and algorithm- agnostic NLP framework for Ruby with support for tasks such as document retrieval, text chunking, segmentation and tokenization, natural language parsing, part-of-speech tagging, keyword extraction and named entity recognition. Learn more by taking a quick tour or by reading the manual. I am actively seeking developers that can help maintain and expand this project. You can find a list of ideas for contributing to the project here.


TextBlob - Simple, Pythonic, text processing--Sentiment analysis, part-of-speech tagging, noun phrase extraction, translation, and more

  •    Python

TextBlob is a Python (2 and 3) library for processing textual data. It provides a simple API for diving into common natural language processing (NLP) tasks such as part-of-speech tagging, noun phrase extraction, sentiment analysis, classification, translation, and more. TextBlob stands on the giant shoulders of NLTK and pattern, and plays nicely with both.

spaCy - 💫 Industrial-strength Natural Language Processing (NLP) with Python and Cython

  •    Python

spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest research, and was designed from day one to be used in real products. spaCy comes with pre-trained statistical models and word vectors, and currently supports tokenization for 20+ languages. It features the fastest syntactic parser in the world, convolutional neural network models for tagging, parsing and named entity recognition and easy deep learning integration. It's commercial open-source software, released under the MIT license. 💫 Version 2.0 out now! Check out the new features here.

nlp-architect - NLP Architect by Intel AI Lab: Python library for exploring the state-of-the-art deep learning topologies and techniques for natural language processing and natural language understanding

  •    Python

NLP Architect is an open-source Python library for exploring state-of-the-art deep learning topologies and techniques for natural language processing and natural language understanding. It is intended to be a platform for future research and collaboration. Framework documentation on NLP models, algorithms, and modules, and instructions on how to contribute can be found at our main documentation site.

nlp-with-ruby - Practical Natural Language Processing done in Ruby.

  •    Ruby

This curated list comprises awesome resources, libraries, information sources about computational processing of texts in human languages with the Ruby programming language. That field is often referred to as NLP, Computational Linguistics, HLT (Human Language Technology) and can be brought in conjunction with Artificial Intelligence, Machine Learning, Information Retrieval, Text Mining, Knowledge Extraction and other related disciplines. This list comes from our day to day work on Language Models and NLP Tools. Read why this list is awesome. Our FAQ describes the important decisions and useful answers you may be interested in.

MMLSpark - Microsoft Machine Learning for Apache Spark

  •    Scala

MMLSpark provides a number of deep learning and data science tools for Apache Spark, including seamless integration of Spark Machine Learning pipelines with Microsoft Cognitive Toolkit (CNTK) and OpenCV, enabling you to quickly create powerful, highly-scalable predictive and analytical models for large image and text datasets.MMLSpark requires Scala 2.11, Spark 2.1+, and either Python 2.7 or Python 3.5+. See the API documentation for Scala and for PySpark.

lectures - Oxford Deep NLP 2017 course

  •    

This repository contains the lecture slides and course description for the Deep Natural Language Processing course offered in Hilary Term 2017 at the University of Oxford. This is an applied course focussing on recent advances in analysing and generating speech and text using recurrent neural networks. We introduce the mathematical definitions of the relevant machine learning models and derive their associated optimisation algorithms. The course covers a range of applications of neural networks in NLP including analysing latent dimensions in text, transcribing speech to text, translating between languages, and answering questions. These topics are organised into three high level themes forming a progression from understanding the use of neural networks for sequential language modelling, to understanding their use as conditional language models for transduction tasks, and finally to approaches employing these techniques in combination with other mechanisms for advanced applications. Throughout the course the practical implementation of such models on CPU and GPU hardware is also discussed.

transformers - 🤗Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX

  •    Python

🤗 Transformers provides thousands of pretrained models to perform tasks on texts such as classification, information extraction, question answering, summarization, translation, text generation and more in over 100 languages. Its aim is to make cutting-edge NLP easier to use for everyone. 🤗 Transformers provides APIs to quickly download and use those pretrained models on a given text, fine-tune them on your own datasets and then share them with the community on our model hub. At the same time, each python module defining an architecture is fully standalone and can be modified to enable quick research experiments.

delta - DELTA is a deep learning based natural language and speech processing platform.

  •    Python

DELTA is a deep learning based end-to-end natural language and speech processing platform. DELTA aims to provide easy and fast experiences for using, deploying, and developing natural language processing and speech models for both academia and industry use cases. DELTA is mainly implemented using TensorFlow and Python 3. For details of DELTA, please refer to this paper.

decaNLP - The Natural Language Decathlon: A Multitask Challenge for NLP

  •    Python

The Natural Language Decathlon is a multitask challenge that spans ten tasks: question answering (SQuAD), machine translation (IWSLT), summarization (CNN/DM), natural language inference (MNLI), sentiment analysis (SST), semantic role labeling(QA‑SRL), zero-shot relation extraction (QA‑ZRE), goal-oriented dialogue (WOZ, semantic parsing (WikiSQL), and commonsense reasoning (MWSC). Each task is cast as question answering, which makes it possible to use our new Multitask Question Answering Network (MQAN). This model jointly learns all tasks in decaNLP without any task-specific modules or parameters in the multitask setting. For a more thorough introduction to decaNLP and the tasks, see the main website, our blog post, or the paper. While the research direction associated with this repository focused on multitask learning, the framework itself is designed in a way that should make single-task training, transfer learning, and zero-shot evaluation simple. Similarly, the paper focused on multitask learning as a form of question answering, but this framework can be easily adapted for different approached to single-task or multitask learning.

BotSharp - The Open Source AI Chatbot Platform Builder in 100% C# Running in

  •    CSharp

BotSharp is an open source machine learning framework for AI Bot platform builder. This project involves natural language understanding, computer vision and audio processing technologies, and aims to promote the development and application of intelligent robot assistants in information systems. Out-of-the-box machine learning algorithms allow ordinary programmers to develop artificial intelligence applications faster and easier. It's witten in C# running on .Net Core that is full cross-platform framework. C# is a enterprise grade programming language which is widely used to code business logic in information management related system. More friendly to corporate developers. BotSharp adopts machine learning algrithm in C# directly. That will facilitate the feature of the typed language C#, and be more easier when refactoring code in system scope.

spago - Self-contained Machine Learning and Natural Language Processing library in Go

  •    Go

A Machine Learning library written in pure Go designed to support relevant neural architectures in Natural Language Processing. spaGO is self-contained, in that it uses its own lightweight computational graph framework for both training and inference, easy to understand from start to finish.

pynlpl - PyNLPl, pronounced as 'pineapple', is a Python library for Natural Language Processing

  •    Python

PyNLPl, pronounced as 'pineapple', is a Python library for Natural Language Processing. It contains various modules useful for common, and less common, NLP tasks. PyNLPl can be used for basic tasks such as the extraction of n-grams and frequency lists, and to build simple language model. There are also more complex data types and algorithms. Moreover, there are parsers for file formats common in NLP (e.g. FoLiA/Giza/Moses/ARPA/Timbl/CQL). There are also clients to interface with various NLP specific servers. PyNLPl most notably features a very extensive library for working with FoLiA XML (Format for Linguistic Annotatation). The library is a divided into several packages and modules. It works on Python 2.7, as well as Python 3.






We have large collection of open source products. Follow the tags from Tag Cloud >>


Open source products are scattered around the web. Please provide information about the open source projects you own / you use. Add Projects.