- 56

A random forest classifier. A random forest is a meta estimator that fits a number of decision tree classifiers on various sub-samples of the dataset and use averaging to improve the predictive accuracy and control over-fitting.Modeled after scikit-learn's RandomForestClassifier.

https://github.com/jessfraz/random-forest-classifier Dependencies:

async : ^0.9.0

underscore : ^1.6.0

Tags | random-forest machine-learning classifier |

Implementation | Javascript |

License | MIT |

Platform | OS-Independent |

Rumale (Ruby machine learning) is a machine learning library in Ruby. Rumale provides machine learning algorithms with interfaces similar to Scikit-Learn in Python. Rumale supports Linear / Kernel Support Vector Machine, Logistic Regression, Linear Regression, Ridge, Lasso, Kernel Ridge, Factorization Machine, Naive Bayes, Decision Tree, AdaBoost, Gradient Tree Boosting, Random Forest, Extra-Trees, K-nearest neighbor classifier, K-Means, K-Medoids, Gaussian Mixture Model, DBSCAN, SNN, Power Iteration Clustering, Mutidimensional Scaling, t-SNE, Principal Component Analysis, Kernel PCA and Non-negative Matrix Factorization. This project was formerly known as "SVMKit". If you are using SVMKit, please install Rumale and replace SVMKit constants with Rumale.

machine-learning data-science data-analysis artificial-intelligenceApache Mahout has implementations of a wide range of machine learning and data mining algorithms: clustering, classification, collaborative filtering and frequent pattern mining.

machine-learning classification data-mining fuzzyPython codes for common Machine Learning Algorithms

linear-regression polynomial-regression logistic-regression decision-trees random-forest svm svr knn-classification naive-bayes-classifier kmeans-clustering hierarchical-clustering pca lda xgboost-algorithmInstructions for how to install the necessary software for this tutorial is available here. Data for the tutorial can be downloaded by running ./data/get-data.sh (requires wget). Certain algorithms don't scale well when there are millions of features. For example, decision trees require computing some sort of metric (to determine the splits) on all the feature values (or some fraction of the values as in Random Forest and Stochastic GBM). Therefore, computation time is linear in the number of features. Other algorithms, such as GLM, scale much better to high-dimensional (n << p) and wide data with appropriate regularization (e.g. Lasso, Elastic Net, Ridge).

machine-learning deep-learning random-forest gradient-boosting-machine tutorial data-science ensemble-learning rThis code provides a hyper-parameter optimization implementation for machine learning algorithms, as described in the paper: L. Yang and A. Shami, “On hyperparameter optimization of machine learning algorithms: Theory and practice,” Neurocomputing, vol. 415, pp. 295–316, 2020, doi: https://doi.org/10.1016/j.neucom.2020.07.061. To fit a machine learning model into different problems, its hyper-parameters must be tuned. Selecting the best hyper-parameter configuration for machine learning models has a direct impact on the model's performance. In this paper, optimizing the hyper-parameters of common machine learning models is studied. We introduce several state-of-the-art optimization techniques and discuss how to apply them to machine learning algorithms. Many available libraries and frameworks developed for hyper-parameter optimization problems are provided, and some open challenges of hyper-parameter optimization research are also discussed in this paper. Moreover, experiments are conducted on benchmark datasets to compare the performance of different optimization methods and provide practical examples of hyper-parameter optimization.

machine-learning deep-learning random-forest optimization svm genetic-algorithm machine-learning-algorithms hyperparameter-optimization artificial-neural-networks grid-search tuning-parameters knn bayesian-optimization hyperparameter-tuning random-search particle-swarm-optimization hpo python-examples python-samples hyperbandRandom Forest - a curated list of resources regarding tree-based methods and more, including but not limited to random forest, bagging and boosting. Please feel free to pull requests, email Jung Kwon Lee (deruci@snu.ac.kr) or join our chats to add links.

The Gesture Recognition Toolkit (GRT) is a cross-platform, open-source, C++ machine learning library designed for real-time gesture recognition. Classification: Adaboost, Decision Tree, Dynamic Time Warping, Gaussian Mixture Models, Hidden Markov Models, k-nearest neighbor, Naive Bayes, Random Forests, Support Vector Machine, Softmax, and more...

gesture-recognition grt machine-learning gesture-recognition-toolkit support-vector-machine random-forest kmeans dynamic-time-warping softmax linear-regressionConsider TPOT your Data Science Assistant. TPOT is a Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.TPOT will automate the most tedious part of machine learning by intelligently exploring thousands of possible pipelines to find the best one for your data.

machine-learning data-science automl automation scikit-learn hyperparameter-optimization model-selection parameter-tuning automated-machine-learning random-forest gradient-boosting feature-engineering xgboost genetic-programmingI just built out v2 of this project that now gives you analytics info from your models, and is production-ready. machineJS is an amazing research project that clearly proved there's a hunger for automated machine learning. auto_ml tackles this exact same goal, but with more features, cleaner code, and the ability to be copy/pasted into production.

machine-learning data-science machine-learning-library machine-learning-algorithms ml data-scientists javascript-library scikit-learn kaggle numerai automated-machine-learning automl auto-ml neuralnet neural-network algorithms random-forest svm naive-bayes bagging optimization brainjs date-night sklearn ensemble data-formatting js xgboost scikit-neuralnetwork knn k-nearest-neighbors gridsearch gridsearchcv grid-search randomizedsearchcv preprocessing data-formatter kaggle-competitionPractice and tutorial-style notebooks covering wide variety of machine learning techniques

numpy statistics pandas matplotlib regression scikit-learn classification principal-component-analysis clustering decision-trees random-forest dimensionality-reduction neural-network deep-learning artificial-intelligence data-science machine-learning k-nearest-neighbours naive-bayesThis project aims at a minimal benchmark for scalability, speed and accuracy of commonly used implementations of a few machine learning algorithms. The target of this study is binary classification with numeric and categorical inputs (of limited cardinality i.e. not very sparse) and no missing data, perhaps the most common problem in business applications (e.g. credit scoring, fraud detection or churn prediction). If the input matrix is of n x p, n is varied as 10K, 100K, 1M, 10M, while p is ~1K (after expanding the categoricals into dummy variables/one-hot encoding). This particular type of data structure/size (the largest) stems from this author's interest in some particular business applications. Note: While a large part of this benchmark was done in Spring 2015 reflecting the state of ML implementations at that time, this repo is being updated if I see significant changes in implementations or new implementations have become widely available (e.g. lightgbm). Also, please find a summary of the progress and learnings from this benchmark at the end of this repo.

machine-learning data-science r gradient-boosting-machine random-forest deep-learning xgboost h2o sparkRank Elasticsearch results using tree based (LambdaMART, Random Forest, MART) and linear models. Models are trained using the scores of Elasicsearch queries as features. You train offline using tooling such as with xgboost or ranklib. You then POST your model to a to Elasticsearch in a specific text format (the custom "ranklib" language, documented here). You apply a model using this plugin's ltr query. See blog post and the full demo (training and searching).Models are stored using an Elasticsearch script plugin. Tree-based models can be large. So we recommend increasing the script.max_size_in_bytes setting. Don't worry, just because tree-based models are verbose, doesn't nescesarilly imply they'll be slow.

elasticsearch relevant-search machine-learning search-relevanceNowTrade is an algorithmic trading library with a focus on creating powerful strategies using easily-readable and simple Python code. With the help of NowTrade, full blown stock/currency trading strategies, harnessing the power of machine learning, can be implemented with few lines of code. NowTrade strategies are not event driven like most other algorithmic trading libraries available. The strategies are implemented in a sequential manner (one line at a time) without worrying about events, callbacks, or object overloading.

trading technical-indicators neural-network random-forest stock currency algorithmic-trading-library machine-learning algorithmic-tradingOur plan is to add more packages that help users understand and interact meaningfully with machine learning. Lime is able to explain any black box classifier, with two or more classes. All we require is that the classifier implements a function that takes in raw text or a numpy array and outputs a probability for each class. Support for scikit-learn classifiers is built-in.

A Naive Bayes machine learning implementation in Elixir. In machine learning, naive Bayes classifiers are a family of simple probabilistic classifiers based on applying Bayes' theorem with strong (naive) independence assumptions between the features.

naive-bayes-classifier bayes machine-learning classifierDeprecation notice: This library is no longer actively maintained. Try the natural classifier. It doesn't have a Redis backend, but otherwise works even better. The first argument to train() can be a string of text or an array of words, the second argument can be any category name you want.

bayesian classifier machine-learningranger is a fast implementation of random forests (Breiman 2001) or recursive partitioning, particularly suited for high dimensional data. Classification, regression, and survival forests are supported. Classification and regression forests are implemented as in the original Random Forest (Breiman 2001), survival forests as in Random Survival Forests (Ishwaran et al. 2008). Includes implementations of extremely randomized trees (Geurts et al. 2006) and quantile regression forests (Meinshausen 2006). ranger is written in C++, but a version for R is available, too. We recommend to use the R version. It is easy to install and use and the results are readily available for further analysis. The R version is as fast as the standalone C++ version.

It is well documented, thoroughly tested with 350+ unit tests and comes bundled with 50+ examples. The source code is licensed under BSD and available from http://www.clips.ua.ac.be/pages/pattern. This example trains a classifier on adjectives mined from Twitter using Python 3. First, tweets that contain hashtag #win or #fail are collected. For example: "$20 tip off a sweet little old lady today #win". The word part-of-speech tags are then parsed, keeping only adjectives. Each tweet is transformed to a vector, a dictionary of adjective → count items, labeled WIN or FAIL. The classifier uses the vectors to learn which other tweets look more like WIN or more like FAIL.

machine-learning natural-language-processing web-mining wordnet sentiment-analysis network-analysisThis is a node.js module that classifies if a sentence can be replied with "that's what she said". You change algorithm from the default naive bayes classifier (nbc) to a k-nearest neighbor algorithm (knn).

machine-learning classifier twss aiA library for easily generating Quil programs to be executed using the Rigetti Forest platform. pyQuil is licensed under the Apache 2.0 license. pyQuil can be used to build and manipulate Quil programs without restriction. However, to run programs (e.g., to get wavefunctions, get multishot experiment data), you will need an API key for Rigetti Forest. This will allow you to run your programs on the Rigetti Quantum Virtual Machine (QVM) or on a real quantum processor (QPU).

forest quil quantum-computing quantum rigetti-forest
We have large collection of open source products. Follow the tags from
Tag Cloud >>

Open source products are scattered around the web. Please provide information
about the open source projects you own / you use.
**Add Projects.**