jeelizWeboji - JavaScript/WebGL real-time face tracking and expression detection library

  •        59

With this library, you can build your own animoji embedded in Javascript/WebGL applications. You do not need any specific device except a standard webcam. By default a webcam feedback image is displayed with the face detection frame. The face detection is quite robust to all lighting conditions, but the evaluation of expression can be noisy if the lighting is too directional, too weak or if there is an important backlight. So the webcam feedback image is useful to see the quality of the input video feed.

https://jeeliz.com
https://github.com/jeeliz/jeelizWeboji

Tags
Implementation
License
Platform

   




Related Projects

jeelizFaceFilter - Javascript/WebGL lightweight face tracking library designed for augmented reality webcam filters

  •    Javascript

This JavaScript library detects and tracks the face in real time from the webcam video feed captured with WebRTC. Then it is possible to overlay 3D content for augmented reality applications. We provide various demonstrations using main WebGL 3D engines. We have included in this repository the release versions of the 3D engines to work with a determined version (they are in /libs/<name of the engine>/). This library is lightweight and it does not include any 3D engine or third party library. We want to keep it framework agnostic so the outputs of the library are raw: if the a face is detected or not, the position and the scale of the detected face and the rotation Euler angles. But thanks to the featured helpers, examples and boilerplates, you can quickly deal with a higher level context (for motion head tracking, for face filter or face replacement...). We continuously add new demontrations, so stay tuned ! Also, feel free to open an issue if you have any question or suggestion.

sod - An Embedded Computer Vision & Machine Learning Library (CPU Optimized & IoT Capable)

  •    C

SOD is an embedded, modern cross-platform computer vision and machine learning software library that expose a set of APIs for deep-learning, advanced media analysis & processing including real-time, multi-class object detection and model training on embedded systems with limited computational resource and IoT devices. SOD was built to provide a common infrastructure for computer vision applications and to accelerate the use of machine perception in open source as well commercial products.

Accord.NET - Machine learning, Computer vision, Statistics and general scientific computing for .NET

  •    CSharp

The Accord.NET project provides machine learning, statistics, artificial intelligence, computer vision and image processing methods to .NET. It can be used on Microsoft Windows, Xamarin, Unity3D, Windows Store applications, Linux or mobile.

facenet - Face recognition using Tensorflow

  •    Python

This is a TensorFlow implementation of the face recognizer described in the paper "FaceNet: A Unified Embedding for Face Recognition and Clustering". The project also uses ideas from the paper "Deep Face Recognition" from the Visual Geometry Group at Oxford. The code is tested using Tensorflow r1.7 under Ubuntu 14.04 with Python 2.7 and Python 3.5. The test cases can be found here and the results can be found here.

4dface - Real-time 3D face tracking and reconstruction from 2D video

  •    C++

This is a demo app showing face tracking and 3D Morphable Model fitting on live webcams and videos. It builds upon the 3D face model library eos and the landmark detection and optimisation library superviseddescent. Clone with submodules: git clone --recursive git://github.com/patrikhuber/4dface.git, or, if you've already cloned it, get the submodules with git submodule update --init --recursive inside the 4dface directory.


Pigo - Go implementation of Pico face detection library (Pico)

  •    Go

Pigo is a pure Go face detection library based on Pixel Intensity Comparison-based Object detection paper. The only existing solution for face detection in the Go ecosystem is using bindings to OpenCV, but installing OpenCV on various platforms is sometimes daunting. This library does not require any third party modules to be installed. However in case you wish to try the real time, webcam based face detection you might need to have Python2 and OpenCV installed, but the core API does not require any third party module or external dependency.

brfv4_javascript_examples - BRFv4 - HTML5/Javascript - examples project

  •    Javascript

It is a real time face detection and tracking SDK. You put in image data (camera stream or single picture) and it outputs facial data. This page also includes all available packages for download.

openpose - OpenPose: Real-time multi-person keypoint detection library for body, face, and hands estimation

  •    C++

OpenPose represents the first real-time multi-person system to jointly detect human body, hand, and facial keypoints (in total 135 keypoints) on single images. For further details, check all released features and release notes.

android-face-detector - A real-time face detection Android library

  •    Kotlin

Face detector is a face detection Android library which can be easily plugged into any camera API (given it provides a way to process its frames). Face detector is built on top of Firebase ML Kit's face detection API.

sphereface - Implementation for <SphereFace: Deep Hypersphere Embedding for Face Recognition> in CVPR'17

  •    Jupyter

SphereFace is released under the MIT License (refer to the LICENSE file for details). 2018.8.14: We recommand an interesting ECCV 2018 paper that comprehensively evaluates SphereFace (A-Softmax) on current widely used face datasets and their proposed noise-controlled IMDb-Face dataset. Interested users can try to train SphereFace on their IMDb-Face dataset. Take a look here.

headtrackr - Javascript library for headtracking via webcam and WebRTC/getUserMedia

  •    Javascript

headtrackr is a javascript library for real-time face tracking and head tracking, tracking the position of a users head in relation to the computer screen, via a web camera and the webRTC/getUserMedia standard. For a demonstration see this video or try out some of the examples with a laptop that has a camera and a browser that has camera webRTC/getUserMedia support. For an overview of browsers supporting the getUserMedia standard see http://caniuse.com/stream.

FaceLight - Simple Silverlight Face Detection

  •    Silverlight

FaceLight is a simple facial recognition method that can be used with Silverlight 's webcam. It searches for a certain sized skin color region in a snapshot to find the face.

face-recognition

  •    Javascript

Simple Node.js API for robust face detection and face recognition. This a Node.js wrapper library for the face detection and face recognition tools implemented in dlib. Installing the package will build dlib for you and download the models. Note, this might take some time.

openface - Face recognition with deep neural networks.

  •    Lua

Free and open source face recognition with deep neural networks. This research was supported by the National Science Foundation (NSF) under grant number CNS-1518865. Additional support was provided by the Intel Corporation, Google, Vodafone, NVIDIA, and the Conklin Kistler family fund. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and should not be attributed to their employers or funding sources.

opencv4nodejs - Asynchronous OpenCV 3

  •    C++

By its nature, JavaScript lacks the performance to implement Computer Vision tasks efficiently. Therefore this package brings the performance of the native OpenCV library to your Node.js application. This project targets OpenCV 3 and provides an asynchronous as well as an synchronous API. The ultimate goal of this project is to provide a comprehensive collection of Node.js bindings to the API of OpenCV and the OpenCV-contrib modules. An overview of available bindings can be found in the API Documentation. Furthermore, contribution is highly appreciated. If you want to get involved you can have a look at the contribution guide.

eos - A lightweight 3D Morphable Face Model fitting library in modern C++11/14

  •    C++

eos is a lightweight 3D Morphable Face Model fitting library that provides basic functionality to use face models, as well as camera and shape fitting functionality. It's written in modern C++11/14. An experimental model viewer to visualise 3D Morphable Models and blendshapes is available here.

tracking.js - A modern approach for Computer Vision on the web

  •    Javascript

The tracking.js library brings different computer vision algorithms and techniques into the browser environment. By using modern HTML5 specifications, we enable you to do real-time color tracking, face detection and much more — all that with a lightweight core (~7 KB) and intuitive interface. You can plug tracking.js into some well supported HTML elements such as <canvas>, <video> and <img>.

FaceTracker - Real time deformable face tracking in C++ with OpenCV 3.

  •    C++

FaceTracker is a library for deformable face tracking written in C++ using OpenCV 2, authored by Jason Saragih and maintained by Kyle McDonald. It is available free for non-commercial use, and may be redistributed under these conditions. Please see license.md for complete details. For commercial use, request a quote.

face-alignment - :fire: 2D and 3D Face alignment library build using pytorch

  •    Python

Detect facial landmarks from Python using the world's most accurate face alignment network, capable of detecting points in both 2D and 3D coordinates. Build using FAN's state-of-the-art deep learning based face alignment method. For detecting faces the library makes use of dlib library.

face_recognition - The world's simplest facial recognition api for Python and the command line

  •    Python

Recognize and manipulate faces from Python or from the command line with the world's simplest face recognition library. Built using dlib's state-of-the-art face recognition built with deep learning. The model has an accuracy of 99.38% on the Labeled Faces in the Wild benchmark.