Hypertable - A high performance, scalable, distributed storage and processing system for structured

  •        1947

Hypertable is based on Google's Bigtable Design, which is a proven scalable design that powers hundreds of Google services. Many of the current scalable NoSQL database offerings are based on a hash table design which means that the data they manage is not kept physically ordered. Hypertable keeps data physically sorted by a primary key and it is well suited for Analytics.

This project is for the design and implementation of a high performance, scalable, distributed storage and processing system for structured and unstructured data. It is designed to manage the storage and processing of information on a large cluster of commodity servers, providing resilience to machine and component failures. Data is represented in the system as a multi-dimensional table of information. The data in a table can be transformed and organized at high speed by performing computations in parallel, pushing them to where the data is physically stored.

http://hypertable.org/

Tags
Implementation
License
Platform

   




Related Projects

Pinot - A realtime distributed OLAP datastore

  •    Java

Pinot is a realtime distributed OLAP datastore, which is used at LinkedIn to deliver scalable real time analytics with low latency. It can ingest data from offline data sources (such as Hadoop and flat files) as well as online sources (such as Kafka). Pinot is designed to scale horizontally, so that it can scale to larger data sets and higher query rates as needed.

HBase - Hadoop database

  •    Java

HBase provides support to handle BigTable - billions of rows X millions of columns. It is a scalable, distributed, versioned, column-oriented store modeled after Google's Bigtable and runs on top of HDFS (Hadoop Distributed Filesystem). It features compression, in-memory operation per-column. Data could be replicated between the nodes. HBase is used in Facebook and Twitter.

EventQL - The database for large-scale event analytics

  •    C++

EventQL is a distributed, column-oriented database built for large-scale event collection and analytics. It runs super-fast SQL and MapReduce queries. Its features include Automatic partitioning, Columnar storage, Standard SQL support, Scales to petabytes, Timeseries and relational data, Fast range scans and lot more.

CockroachDB - Cloud-native SQL database.

  •    Go

CockroachDB is a cloud-native SQL database for building global, scalable cloud services that survive disasters.CockroachDB is a distributed SQL database built on a transactional and strongly-consistent key-value store. It scales horizontally; survives disk, machine, rack, and even datacenter failures with minimal latency disruption and no manual intervention; supports strongly-consistent ACID transactions; and provides a familiar SQL API for structuring, manipulating, and querying data.

Crate - The fast, scalable, easy to use SQL database with native full text search

  •    Java

Crate is an open source, highly scalable, shared-nothing distributed SQL database. Crate offers the scalability and performance of a modern No-SQL database with the power of Standard SQL. Crate’s distributed SQL query engine lets you use the same syntax that already exists in your applications or integrations, and have queries seamlessly executed across the crate cluster, including any aggregations, if needed.


Cassandra - Scalable Distributed Database

  •    Java

The Apache Cassandra Project develops a highly scalable second-generation distributed database, bringing together Dynamo's fully distributed design and Bigtable's ColumnFamily-based data model. Cassandra is suitable for applications that can't afford to lose data. Data is automatically replicated to multiple nodes for fault-tolerance.

VoltDB - Fast Scalable SQL DBMS with ACID

  •    Java

VoltDB was specifically designed for contemporary software applications that are pushed beyond their limits by high volume data sources. VoltDB provides the ability to capture, store and process incoming data at millions of read/write operations per second. And VoltDB’s relational model opens that data to be analyzed in real-time, using familiar Business Intelligence tools, to identify data patterns and trends, spot anomalies, or perform tracking and alerting.

MapD - The MapD Core database

  •    C++

MapD Core is an in-memory, column store, SQL relational database that was designed from the ground up to run on GPUs. MapD Core is the foundational element of a larger data exploration platform that emphasizes speed at scale. By taking advantage of the parallel processing power of the hardware, MapD Core can query billions of rows in milliseconds. Furthermore, by using the graphics pipelines of GPUs, MapD Core can render graphics directly from the server.

Cloudata - Structured Data Storage implementing Google's Bigtable.

  •    Java

Cloudata is Distributed Large scale Structured Data Storage, and open source project implementing Google's Bigtable. It's DBMS(Database Management System), but not Relational DBMS. It can store more than Peta bytes.

ClickHouse - Columnar DBMS and Real Time Analytics

  •    C++

ClickHouse is an open source column-oriented database management system capable of real time generation of analytical data reports using SQL queries. It is Linearly Scalable, Blazing Fast, Highly Reliable, Fault Tolerant, Data compression, Real time query processing, Web analytics, Vectorized query execution, Local and distributed joins. It can process hundreds of millions to more than a billion rows and tens of gigabytes of data per single server per second.

radon - RadonDB is an open source, cloud-native MySQL database for building global, scalable cloud services

  •    Go

RadonDB is an open source, Cloud-native MySQL database for unlimited scalability and performance. RadonDB is a cloud-native database based on MySQL,and architected in fully distributed cluster that enable unlimited scalability (scale-out), capacity and performance. It supported distributed transaction that ensure high data consistency, and leveraged MySQL as storage engine for trusted data reliability. RadonDB is compatible with MySQL protocol, and sup-porting automatic table sharding as well as batch of automation feature for simplifying the maintenance and operation workflow.

InfiniDB - Scale-up analytics database engine for data warehousing and business intelligence

  •    C++

InfiniDB Community Edition is a scale-up, column-oriented database for data warehousing, analytics, business intelligence and read-intensive applications. InfiniDB's data warehouse columnar engine is multi-terabyte capable and accessed via MySQL.

Druid IO - Real Time Exploratory Analytics on Large Datasets

  •    Java

Druid is a distributed, column-oriented, real-time analytics data store that is commonly used to power exploratory dashboards in multi-tenant environments. Druid excels as a data warehousing solution for fast aggregate queries on petabyte sized data sets. Druid supports a variety of flexible filters, exact calculations, approximate algorithms, and other useful calculations. Druid can load both streaming and batch data.

BigchainDB - The Scalable Blockchain Database

  •    Python

BigchainDB allows developers and enterprise to deploy blockchain proof-of-concepts, platforms and applications with a scalable blockchain database, supporting a wide range of industries and use cases. It is a decentralization ecosystem: a decentralized database, at scale. It can perform 1 million writes per second throughput, store petabytes of data, and sub-second latency.

YugaByte Database - Transactional, high-performance database for building internet-scale, globally-distributed applications

  •    C++

A cloud-native database for building mission-critical applications. This repository contains the Community Edition of the YugaByte Database.YugaByte offers both SQL and NoSQL in a single, unified db. It is meant to be a system-of-record/authoritative database that applications can rely on for correctness and availability. It allows applications to easily scale up and scale down in the cloud, on-premises or across hybrid environments without creating operational complexity or increasing the risk of outages.

FiloDB - Distributed. Columnar. Versioned. Streaming. SQL.

  •    Scala

High-performance distributed analytical database + Spark SQL queries + built for streaming. Columnar, versioned layers of data wrapped in a yummy high-performance analytical database engine.

GeoMesa - Suite of tools for working with big geo-spatial data in a distributed fashion

  •    Scala

GeoMesa is an open-source, distributed, spatio-temporal database built on a number of distributed cloud data storage systems, including Accumulo, HBase, Cassandra, and Kafka. Leveraging a highly parallelized indexing strategy, GeoMesa aims to provide as much of the spatial querying and data manipulation to Accumulo as PostGIS does to Postgres.

ConcourseDB - Self-tuning database designed for both transactions and ad hoc analytics across time

  •    Java

ConcourseDB is a distributed self-tuning database with automatic indexing, version control and ACID transactions. ConcourseDB provides a more intuitive approach to data management that is easy to deploy, access and scale while maintaining the strong consistency of traditional database systems.

Timescaledb - An open-source time-series database optimized for fast ingest and complex queries

  •    PLpgSQL

TimescaleDB is an open-source database designed to make SQL scalable for time-series data. It is engineered up from PostgreSQL, providing automatic partitioning across time and space (partitioning key), as well as full SQL support. TimescaleDB is packaged as a PostgreSQL extension and released under the Apache 2 open-source license.

ActorDB - Distributed SQL database with linear scalability

  •    Erlang

ActorDB is ideal as a server side database for apps. Think of running a large mail service, dropbox, evernote, etc. They all require server side storage for user data, but the vast majority of queries is within a specific user. With many users, the server side database can get very large. Using ActorDB you can keep a full relational database for every user and not be forced into painful scaling strategies that require you to throw away everything that makes relational databases good.