Hypertable - A high performance, scalable, distributed storage and processing system for structured

  •        0

Hypertable is based on Google's Bigtable Design, which is a proven scalable design that powers hundreds of Google services. Many of the current scalable NoSQL database offerings are based on a hash table design which means that the data they manage is not kept physically ordered. Hypertable keeps data physically sorted by a primary key and it is well suited for Analytics.

This project is for the design and implementation of a high performance, scalable, distributed storage and processing system for structured and unstructured data. It is designed to manage the storage and processing of information on a large cluster of commodity servers, providing resilience to machine and component failures. Data is represented in the system as a multi-dimensional table of information. The data in a table can be transformed and organized at high speed by performing computations in parallel, pushing them to where the data is physically stored.

http://hypertable.org/

Tags
Implementation
License
Platform

   




Related Projects

HBase - Hadoop database


HBase provides support to handle BigTable - billions of rows X millions of columns. It is a scalable, distributed, versioned, column-oriented store modeled after Google's Bigtable and runs on top of HDFS (Hadoop Distributed Filesystem). It features compression, in-memory operation per-column. Data could be replicated between the nodes. HBase is used in Facebook and Twitter.

Crate - The fast, scalable, easy to use SQL database with native full text search


Crate is an open source, highly scalable, shared-nothing distributed SQL database. Crate offers the scalability and performance of a modern No-SQL database with the power of Standard SQL. Crate’s distributed SQL query engine lets you use the same syntax that already exists in your applications or integrations, and have queries seamlessly executed across the crate cluster, including any aggregations, if needed.

Cassandra - Scalable Distributed Database


The Apache Cassandra Project develops a highly scalable second-generation distributed database, bringing together Dynamo's fully distributed design and Bigtable's ColumnFamily-based data model. Cassandra is suitable for applications that can't afford to lose data. Data is automatically replicated to multiple nodes for fault-tolerance.

Pinot - A realtime distributed OLAP datastore


Pinot is a realtime distributed OLAP datastore, which is used at LinkedIn to deliver scalable real time analytics with low latency. It can ingest data from offline data sources (such as Hadoop and flat files) as well as online sources (such as Kafka). Pinot is designed to scale horizontally, so that it can scale to larger data sets and higher query rates as needed.

VoltDB - Fast Scalable SQL DBMS with ACID


VoltDB was specifically designed for contemporary software applications that are pushed beyond their limits by high volume data sources. VoltDB provides the ability to capture, store and process incoming data at millions of read/write operations per second. And VoltDB’s relational model opens that data to be analyzed in real-time, using familiar Business Intelligence tools, to identify data patterns and trends, spot anomalies, or perform tracking and alerting.

EventQL - The database for large-scale event analytics


EventQL is a distributed, column-oriented database built for large-scale event collection and analytics. It runs super-fast SQL and MapReduce queries. Its features include Automatic partitioning, Columnar storage, Standard SQL support, Scales to petabytes, Timeseries and relational data, Fast range scans and lot more.

Cloudata - Structured Data Storage implementing Google's Bigtable.


Cloudata is Distributed Large scale Structured Data Storage, and open source project implementing Google's Bigtable. It's DBMS(Database Management System), but not Relational DBMS. It can store more than Peta bytes.

Druid IO - Real Time Exploratory Analytics on Large Datasets


Druid is a distributed, column-oriented, real-time analytics data store that is commonly used to power exploratory dashboards in multi-tenant environments. Druid excels as a data warehousing solution for fast aggregate queries on petabyte sized data sets. Druid supports a variety of flexible filters, exact calculations, approximate algorithms, and other useful calculations. Druid can load both streaming and batch data.

InfiniDB - Scale-up analytics database engine for data warehousing and business intelligence


InfiniDB Community Edition is a scale-up, column-oriented database for data warehousing, analytics, business intelligence and read-intensive applications. InfiniDB's data warehouse columnar engine is multi-terabyte capable and accessed via MySQL.

BigchainDB - The Scalable Blockchain Database


BigchainDB allows developers and enterprise to deploy blockchain proof-of-concepts, platforms and applications with a scalable blockchain database, supporting a wide range of industries and use cases. It is a decentralization ecosystem: a decentralized database, at scale. It can perform 1 million writes per second throughput, store petabytes of data, and sub-second latency.

GeoMesa - Suite of tools for working with big geo-spatial data in a distributed fashion


GeoMesa is an open-source, distributed, spatio-temporal database built on a number of distributed cloud data storage systems, including Accumulo, HBase, Cassandra, and Kafka. Leveraging a highly parallelized indexing strategy, GeoMesa aims to provide as much of the spatial querying and data manipulation to Accumulo as PostGIS does to Postgres.

ConcourseDB - Self-tuning database designed for both transactions and ad hoc analytics across time


ConcourseDB is a distributed self-tuning database with automatic indexing, version control and ACID transactions. ConcourseDB provides a more intuitive approach to data management that is easy to deploy, access and scale while maintaining the strong consistency of traditional database systems.

InfluxDB - Distributed Time Series Database


InfluxDB is an open-source, distributed, time series database with no external dependencies. It's useful for recording metrics, events, and performing analytics. Everything in InfluxDB is a time series that you can perform standard functions on like min, max, sum, count, mean, median, percentiles, and more. Collect your data on any interval and compute rollups on the fly later.

RethinkDB - Distributed JSON database


RethinkDB is built to store JSON documents, and scale to multiple machines with very little effort. It has a pleasant query language that supports really useful queries like table joins and group by, and is easy to setup and learn. It supports JSON data model, Distributed joins, subqueries, aggregation, atomic updates, Hadoop-style map/reduce.

Kairosdb - Fast distributed scalable time series database written on top of Cassandra


KairosDB is a fast distributed scalable time series database written on top of Cassandra. Data can be pushed in KairosDB via multiple protocols : Telnet, Rest, Graphite. KairosDB stores time series in Cassandra, the popular and performant NoSQL datastore. It supports aggregators which can perform an operation on data points and down samples. Standard functions like min, max, sum, count, mean etc.

OpenTSDB - A scalable, distributed Time Series Database.


OpenTSDB is a distributed, scalable Time Series Database (TSDB) written on top of HBase. OpenTSDB was written to address a common need: store, index and serve metrics collected from computer systems (network gear, operating systems, applications) at a large scale, and make this data easily accessible and graphable.

Infobright - The Database for Analytics


Infobright combines a columnar database with our Knowledge Grid architecture to deliver a self-managing, self-tuning database optimized for analytics. Infobright eliminates the need to create indexes, partition data, or do any manual tuning to achieve fast response for queries and reports.

Apache Tajo - A big data warehouse system on Hadoop


Apache Tajo is a robust big data relational and distributed data warehouse system for Apache Hadoop. Tajo is designed for low-latency and scalable ad-hoc queries, online aggregation, and ETL (extract-transform-load process) on large-data sets stored on HDFS (Hadoop Distributed File System) and other data sources.

Titan - Scalable Graph Database


Titan is a scalable graph database optimized for storing and querying graphs containing hundreds of billions of vertices and edges distributed across a multi-machine cluster. Titan is a transactional database that can support thousands of concurrent users executing complex graph traversals. It is a native Blueprints enabled graph database and as such, it supports the full TinkerPop stack of technologies.

DalmatinerDB - Fast distributed metrics database in Erlang


DalmatinerDB is a metric database written in pure Erlang. It takes advantage of some special properties of metrics to make some tradeoffs. Its goal is to make a store for metric data (time, value of a metric) that is fast, has a low overhead, and is easy to query and manage. DalmatinerDB allows for metric input in second or even sub-second precision. It will interpolate the missing values to the best of it’s abilities. This is usually acceptable for aggregated data.