neuralcoref - ✨Fast Coreference Resolution in spaCy with Neural Networks

  •        175

NeuralCoref is a pipeline extension for spaCy 2.0 that annotates and resolves coreference clusters using a neural network. NeuralCoref is production-ready, integrated in spaCy's NLP pipeline and easily extensible to new training datasets. For a brief introduction to coreference resolution and NeuralCoref, please refer to our blog post. NeuralCoref is written in Python/Cython and comes with pre-trained statistical models for English. It can be trained in other languages. NeuralCoref is accompanied by a visualization client NeuralCoref-Viz, a web interface powered by a REST server that can be tried online. NeuralCoref is released under the MIT license.

https://huggingface.co/coref/
https://github.com/huggingface/neuralcoref

Tags
Implementation
License
Platform

   




Related Projects

spaCy - 💫 Industrial-strength Natural Language Processing (NLP) with Python and Cython

  •    Python

spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest research, and was designed from day one to be used in real products. spaCy comes with pre-trained statistical models and word vectors, and currently supports tokenization for 20+ languages. It features the fastest syntactic parser in the world, convolutional neural network models for tagging, parsing and named entity recognition and easy deep learning integration. It's commercial open-source software, released under the MIT license. 💫 Version 2.0 out now! Check out the new features here.

thinc - 🔮 spaCy's Machine Learning library for NLP in Python

  •    Assembly

Thinc is the machine learning library powering spaCy. It features a battle-tested linear model designed for large sparse learning problems, and a flexible neural network model under development for spaCy v2.0. Thinc is a practical toolkit for implementing models that follow the "Embed, encode, attend, predict" architecture. It's designed to be easy to install, efficient for CPU usage and optimised for NLP and deep learning with text – in particular, hierarchically structured input and variable-length sequences.

OpenNLP - Machine learning based toolkit for the processing of natural language text

  •    Java

The Apache OpenNLP library is a machine learning based toolkit for the processing of natural language text. It supports the most common NLP tasks, such as tokenization, sentence segmentation, part-of-speech tagging, named entity extraction, chunking, parsing, and coreference resolution. These tasks are usually required to build more advanced text processing services. OpenNLP also includes maximum entropy and perceptron based machine learning.

practical-machine-learning-with-python - Master the essential skills needed to recognize and solve complex real-world problems with Machine Learning and Deep Learning by leveraging the highly popular Python Machine Learning Eco-system

  •    Jupyter

"Data is the new oil" is a saying which you must have heard by now along with the huge interest building up around Big Data and Machine Learning in the recent past along with Artificial Intelligence and Deep Learning. Besides this, data scientists have been termed as having "The sexiest job in the 21st Century" which makes it all the more worthwhile to build up some valuable expertise in these areas. Getting started with machine learning in the real world can be overwhelming with the vast amount of resources out there on the web. "Practical Machine Learning with Python" follows a structured and comprehensive three-tiered approach packed with concepts, methodologies, hands-on examples, and code. This book is packed with over 500 pages of useful information which helps its readers master the essential skills needed to recognize and solve complex problems with Machine Learning and Deep Learning by following a data-driven mindset. By using real-world case studies that leverage the popular Python Machine Learning ecosystem, this book is your perfect companion for learning the art and science of Machine Learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute Machine Learning systems and projects successfully.

sense2vec - 🦆 Use NLP to go beyond vanilla word2vec

  •    C++

sense2vec (Trask et. al, 2015) is a nice twist on word2vec that lets you learn more interesting, detailed and context-sensitive word vectors. For an interactive example of the technology, see our sense2vec demo that lets you explore semantic similarities across all Reddit comments of 2015. This library is a simple Python/Cython implementation for loading and querying sense2vec models. While it's best used in combination with spaCy, the sense2vec library itself is very lightweight and can also be used as a standalone module. See below for usage details.


textacy - NLP, before and after spaCy

  •    Python

textacy is a Python library for performing a variety of natural language processing (NLP) tasks, built on the high-performance spacy library. With the fundamentals --- tokenization, part-of-speech tagging, dependency parsing, etc. --- delegated to another library, textacy focuses on the tasks that come before and follow after. Note: Docs used to be hosted on ReadTheDocs, but the builds stopped working many months ago, and now those docs are out-of-date. This is unfortunate, especially since ReadTheDocs allows for multiple versions while GitHub Pages does not. I'll keep trying on ReadTheDocs; if the build issues ever get resolved, I'll switch the docs back.

displacy - :boom: displaCy.js: An open-source NLP visualiser for the modern web

  •    Javascript

⚠️ As of v2.0.0, the displaCy visualizers are now integrated into the core library. See here for more details on how to visualize a Doc object from within spaCy. We're also working on a new suite of tools for serving and testing spaCy models. The code of the standalone visualizers will still be available on GitHub, just not actively maintained. displaCy.js is a modern and service-independent visualisation library. We hope this makes it easy to compare different services, and explore your own in-house models. If you're using spaCy's syntactic parser, displaCy should be part of your regular workflow. Because spaCy's parser is statistical, it's often hard to predict how it will analyse a given sentence. Using displaCy, you can simply try and see. You can also share the page for discussion with your team, or save the SVG to use elsewhere. If you're developing your own model, you can run the service yourself — it's 100% open source.

Rasa - Create chatbots and voice assistants

  •    Python

Rasa is an open source machine learning framework to automate text-and voice-based conversations. With Rasa, you can build chatbots on Facebook, Slack, Microsoft Bot Framework, Rocket.Chat, Mattermost, Telegram etc. Rasa's primary purpose is to help you build contextual, layered conversations with lots of back-and-forth. To have a real conversation, you need to have some memory and build on things that were said earlier. Rasa lets you do that in a scalable way.

stanfordnlp - Official Stanford NLP Python Library for Many Human Languages

  •    Python

The Stanford NLP Group's official Python NLP library. It contains packages for running our latest fully neural pipeline from the CoNLL 2018 Shared Task and for accessing the Java Stanford CoreNLP server. For detailed information please visit our official website. The PyTorch implementation of the neural pipeline in this repository is due to Peng Qi and Yuhao Zhang, with help from Tim Dozat and Jason Bolton.

PyTorch-NLP - Supporting Rapid Prototyping with a Toolkit (incl. Datasets and Neural Network Layers)

  •    Python

PyTorch-NLP, or torchnlp for short, is a library of neural network layers, text processing modules and datasets designed to accelerate Natural Language Processing (NLP) research. Join our community, add datasets and neural network layers! Chat with us on Gitter and join the Google Group, we're eager to collaborate with you.

text-analytics-with-python - Learn how to process, classify, cluster, summarize, understand syntax, semantics and sentiment of text data with the power of Python! This repository contains code and datasets used in my book, "Text Analytics with Python" published by Apress/Springer

  •    Python

Derive useful insights from your data using Python. Learn the techniques related to natural language processing and text analytics, and gain the skills to know which technique is best suited to solve a particular problem. A structured and comprehensive approach is followed in this book so that readers with little or no experience do not find themselves overwhelmed. You will start with the basics of natural language and Python and move on to advanced analytical and machine learning concepts. You will look at each technique and algorithm with both a bird's eye view to understand how it can be used as well as with a microscopic view to understand the mathematical concepts and to implement them to solve your own problems.

deep-learning-book - Repository for "Introduction to Artificial Neural Networks and Deep Learning: A Practical Guide with Applications in Python"

  •    Jupyter

Repository for the book Introduction to Artificial Neural Networks and Deep Learning: A Practical Guide with Applications in Python. Deep learning is not just the talk of the town among tech folks. Deep learning allows us to tackle complex problems, training artificial neural networks to recognize complex patterns for image and speech recognition. In this book, we'll continue where we left off in Python Machine Learning and implement deep learning algorithms in PyTorch.

lectures - Oxford Deep NLP 2017 course

  •    

This repository contains the lecture slides and course description for the Deep Natural Language Processing course offered in Hilary Term 2017 at the University of Oxford. This is an applied course focussing on recent advances in analysing and generating speech and text using recurrent neural networks. We introduce the mathematical definitions of the relevant machine learning models and derive their associated optimisation algorithms. The course covers a range of applications of neural networks in NLP including analysing latent dimensions in text, transcribing speech to text, translating between languages, and answering questions. These topics are organised into three high level themes forming a progression from understanding the use of neural networks for sequential language modelling, to understanding their use as conditional language models for transduction tasks, and finally to approaches employing these techniques in combination with other mechanisms for advanced applications. Throughout the course the practical implementation of such models on CPU and GPU hardware is also discussed.

neuralmonkey - An open-source tool for sequence learning in NLP built on TensorFlow.

  •    Python

The Neural Monkey package provides a higher level abstraction for sequential neural network models, most prominently in Natural Language Processing (NLP). It is built on TensorFlow. It can be used for fast prototyping of sequential models in NLP which can be used e.g. for neural machine translation or sentence classification. The higher-level API brings together a collection of standard building blocks (RNN encoder and decoder, multi-layer perceptron) and a simple way of adding new building blocks implemented directly in TensorFlow.

grokking-pytorch - The Hitchiker's Guide to PyTorch

  •    

PyTorch is a flexible deep learning framework that allows automatic differentiation through dynamic neural networks (i.e., networks that utilise dynamic control flow like if statements and while loops). It supports GPU acceleration, distributed training, various optimisations, and plenty more neat features. These are some notes on how I think about using PyTorch, and don't encompass all parts of the library or every best practice, but may be helpful to others. Neural networks are a subclass of computation graphs. Computation graphs receive input data, and data is routed to and possibly transformed by nodes which perform processing on the data. In deep learning, the neurons (nodes) in neural networks typically transform data with parameters and differentiable functions, such that the parameters can be optimised to minimise a loss via gradient descent. More broadly, the functions can be stochastic, and the structure of the graph can be dynamic. So while neural networks may be a good fit for dataflow programming, PyTorch's API has instead centred around imperative programming, which is a more common way for thinking about programs. This makes it easier to read code and reason about complex programs, without necessarily sacrificing much performance; PyTorch is actually pretty fast, with plenty of optimisations that you can safely forget about as an end user (but you can dig in if you really want to).

PyTorch-GAN - PyTorch implementations of Generative Adversarial Networks.

  •    Python

Collection of PyTorch implementations of Generative Adversarial Network varieties presented in research papers. Model architectures will not always mirror the ones proposed in the papers, but I have chosen to focus on getting the core ideas covered instead of getting every layer configuration right. Contributions and suggestions of GANs to implement are very welcomed. Synthesizing high resolution photorealistic images has been a long-standing challenge in machine learning. In this paper we introduce new methods for the improved training of generative adversarial networks (GANs) for image synthesis. We construct a variant of GANs employing label conditioning that results in 128x128 resolution image samples exhibiting global coherence. We expand on previous work for image quality assessment to provide two new analyses for assessing the discriminability and diversity of samples from class-conditional image synthesis models. These analyses demonstrate that high resolution samples provide class information not present in low resolution samples. Across 1000 ImageNet classes, 128x128 samples are more than twice as discriminable as artificially resized 32x32 samples. In addition, 84.7% of the classes have samples exhibiting diversity comparable to real ImageNet data.

ignite - High-level library to help with training neural networks in PyTorch

  •    Python

Ignite is a high-level library to help with training neural networks in PyTorch. As you can see, the code is more concise and readable with ignite. Furthermore, adding additional metrics, or things like early stopping is a breeze in ignite, but can start to rapidly increase the complexity of your code when "rolling your own" training loop.