The architecture was inspired by U-Net: Convolutional Networks for Biomedical Image Segmentation. The original dataset is from isbi challenge, and I've downloaded it and done the pre-processing.

unet keras segmentationkeras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seamlessly integrates with the deep learning library Keras. Just like Keras, it works with either Theano or TensorFlow, which means that you can train your algorithm efficiently either on CPU or GPU. Furthermore, keras-rl works with OpenAI Gym out of the box. This means that evaluating and playing around with different algorithms is easy. Of course you can extend keras-rl according to your own needs. You can use built-in Keras callbacks and metrics or define your own. Even more so, it is easy to implement your own environments and even algorithms by simply extending some simple abstract classes. In a nutshell: keras-rl makes it really easy to run state-of-the-art deep reinforcement learning algorithms, uses Keras and thus Theano or TensorFlow and was built with OpenAI Gym in mind.

keras tensorflow theano reinforcement-learning neural-networks machine-learningThis library is the official extension repository for the python deep learning library Keras. It contains additional layers, activations, loss functions, optimizers, etc. which are not yet available within Keras itself. All of these additional modules can be used in conjunction with core Keras models and modules. As the community contributions in Keras-Contrib are tested, used, validated, and their utility proven, they may be integrated into the Keras core repository. In the interest of keeping Keras succinct, clean, and powerfully simple, only the most useful contributions make it into Keras. This contribution repository is both the proving ground for new functionality, and the archive for functionality that (while useful) may not fit well into the Keras paradigm.

keras theano tensorflow machine-learning deep-learning neural-networks data-scienceDistributed Deep Learning with Apache Spark and Keras. Distributed Keras is a distributed deep learning framework built op top of Apache Spark and Keras, with a focus on "state-of-the-art" distributed optimization algorithms. We designed the framework in such a way that a new distributed optimizer could be implemented with ease, thus enabling a person to focus on research. Several distributed methods are supported, such as, but not restricted to, the training of ensembles and models using data parallel methods.

machine-learning deep-learning apache-spark data-parallelism distributed-optimizers keras optimization-algorithms tensorflow data-science hadoopThis repository contains Keras/Tensorflow code for the "CRF-RNN" semantic image segmentation method, published in the ICCV 2015 paper Conditional Random Fields as Recurrent Neural Networks. This paper was initially described in an arXiv tech report. The online demo of this project won the Best Demo Prize at ICCV 2015. Original Caffe-based code of this project can be found here. Results produced with this Keras/Tensorflow code are almost identical to that with the Caffe-based version. The root directory of the clone will be referred to as crfasrnn_keras hereafter.

image-segmentation semantic-segmentation crf-as-rnn tensorflow keras crfasrnn crfasrnn-keras crfasrnn-tensorflow crf-rnn-tensorflow crf-rnn-kerasTernausNet is a modification of the celebrated UNet architecture that is widely used for binary Image Segmentation. For more details, please refer to our arXiv paper. This architecture was a part of the winning solutiuon (1st out of 735 teams) in the Carvana Image Masking Challenge.

pytorch image-segmentation**This project is no longer active. Please check out TensorFlow.js.** The Keras.js demos still work but is no longer updated. Run Keras models in the browser, with GPU support provided by WebGL 2. Models can be run in Node.js as well, but only in CPU mode. Because Keras abstracts away a number of frameworks as backends, the models can be trained in any backend, including TensorFlow, CNTK, etc.

deep-learning machine-learning webgl tensorflow neural-networks keras deep learning neural networks webgl2 gpuJupyter notebooks for using & learning Keras

deep-learning keras-notebooks keraskeras-rcnn is the Keras package for region-based convolutional neural networks. The data is made up of a list of dictionaries corresponding to images.

deep-learning theano tensorflow cntk object-detection image-segmentationA live training loss plot in Jupyter Notebook for Keras, PyTorch and other frameworks. An open source Python package by Piotr MigdaĆ et al. Visual feedback allows us to keep track of the training process. Now there is one for Jupyter.

jupyter-notebook keras keras-visualization deep-learning pytrochAccelerating Deep Learning with Multiprocess Image Augmentation in Keras

deep-learning keras tensorflow multiprocessingKeras Applications is the applications module of the Keras deep learning library. It provides model definitions and pre-trained weights for a number of popular archictures, such as VGG16, ResNet50, Xception, MobileNet, and more. Keras Applications is compatible with Python 2.7-3.6 and is distributed under the MIT license.

Keras Preprocessing is the data preprocessing and data augmentation module of the Keras deep learning library. It provides utilities for working with image data, text data, and sequence data. Keras Preprocessing is compatible with Python 2.7-3.6 and is distributed under the MIT license.

There are certainly a lot of guides to assist you build great deep learning (DL) setups on Linux or Mac OS (including with Tensorflow which, unfortunately, as of this posting, cannot be easily installed on Windows), but few care about building an efficient Windows 10-native setup. Most focus on running an Ubuntu VM hosted on Windows or using Docker, unnecessary - and ultimately sub-optimal - steps. We also found enough misguiding/deprecated information out there to make it worthwhile putting together a step-by-step guide for the latest stable versions of Keras, Tensorflow, CNTK, MXNet, and PyTorch. Used either together (e.g., Keras with Tensorflow backend), or independently -- PyTorch cannot be used as a Keras backend, TensorFlow can be used on its own -- they make for some of the most powerful deep learning python libraries to work natively on Windows.

theano gpu-acceleration deep-learning tensorflow cudnn cntk gpu-mode kerasHow simple is it to cause a deep neural network to misclassify an image if an attacker is only allowed to modify the color of one pixel and only see the prediction probability? Turns out it is very simple. In many cases, an attacker can even cause the network to return any answer they want. The following project is a Keras reimplementation and tutorial of "One pixel attack for fooling deep neural networks".

keras cnn cifar10 machine-learning tensorflow deep-learning neural-network imagenet image-processing nlpCollection of Keras implementations of Generative Adversarial Networks (GANs) suggested in research papers. These models are in some cases simplified versions of the ones ultimately described in the papers, but I have chosen to focus on getting the core ideas covered instead of getting every layer configuration right. Contributions and suggestions of GAN varieties to implement are very welcomed. Implementation of Auxiliary Classifier Generative Adversarial Network.

deep-learning gan keras generative-adversarial-networks neural-networksNeural Machine Translation with Keras (Theano and Tensorflow). for obtaining the required packages for running this library.

neural-machine-translation keras deep-learning sequence-to-sequence theano machine-learning nmt machine-translation lstm-networks gru tensorflow attention-mechanism web-demo transformer attention-is-all-you-need attention-model attention-seq2seqWelcome to my GitHub repo. I am a Data Scientist and I code in R, Python and Wolfram Mathematica. Here you will find some Machine Learning, Deep Learning, Natural Language Processing and Artificial Intelligence models I developed.

anomaly-detection deep-learning autoencoder keras keras-models denoising-autoencoders generative-adversarial-network glove keras-layer word2vec nlp natural-language-processing sentiment-analysis opencv segnet resnet-50 variational-autoencoder t-sne svm-classifier latent-dirichlet-allocationSchematically, elephas works as follows. Elephas brings deep learning with Keras to Spark. Elephas intends to keep the simplicity and high usability of Keras, thereby allowing for fast prototyping of distributed models, which can be run on massive data sets. For an introductory example, see the following iPython notebook.

spark keras neural-networks deep-learning distributed-computingA very simple convenience wrapper around hyperopt for fast prototyping with keras models. Hyperas lets you use the power of hyperopt without having to learn the syntax of it. Instead, just define your keras model as you are used to, but use a simple template notation to define hyper-parameter ranges to tune. To do hyper-parameter optimization on this model, just wrap the parameters you want to optimize into double curly brackets and choose a distribution over which to run the algorithm.

hyperopt keras hyperparameter-optimization
We have large collection of open source products. Follow the tags from
Tag Cloud >>

Open source products are scattered around the web. Please provide information
about the open source projects you own / you use.
**Add Projects.**