tf-vqvae - Tensorflow Implementation of the paper [Neural Discrete Representation Learning](https://arxiv

  •        180

This repository implements the paper, Neural Discrete Representation Learning (VQ-VAE) in Tensorflow. ⚠️ This is not an official implementation, and might have some glitch (,or a major defect).



Related Projects

generative-models - Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow.

  •    Python

Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow. Also present here are RBM and Helmholtz Machine. Generated samples will be stored in GAN/{gan_model}/out (or VAE/{vae_model}/out, etc) directory during training.

TensorFlow-VAE-GAN-DRAW - A collection of generative methods implemented with TensorFlow (Deep Convolutional Generative Adversarial Networks (DCGAN), Variational Autoencoder (VAE) and DRAW: A Recurrent Neural Network For Image Generation)

  •    Python

TensorFlow implementation of Deep Convolutional Generative Adversarial Networks, Variational Autoencoder (also Deep and Convolutional) and DRAW: A Recurrent Neural Network For Image Generation. Deep Convolutional Generative Adversarial Networks produce decent results after 10 epochs using default parameters.

cppn-gan-vae-tensorflow - Train CPPNs as a Generative Model, using Generative Adversarial Networks and Variational Autoencoder techniques to produce high resolution images

  •    Python

Train Compositional Pattern Producing Network as a Generative Model, using Generative Adversarial Networks and Variational Autoencoder techniques to produce high resolution images. Run python from the command line to train from scratch and experiment with different settings.

DCGAN-tensorflow - A tensorflow implementation of "Deep Convolutional Generative Adversarial Networks"

  •    Javascript

Tensorflow implementation of Deep Convolutional Generative Adversarial Networks which is a stabilize Generative Adversarial Networks. The referenced torch code can be found here.

NVAE - The Official PyTorch Implementation of "NVAE: A Deep Hierarchical Variational Autoencoder" (NeurIPS 2020 spotlight paper)

  •    Python

NVAE is a deep hierarchical variational autoencoder that enables training SOTA likelihood-based generative models on several image datasets. These datasets will be downloaded automatically, when you run the main training for NVAE using for the first time. You can use --data=$DATA_DIR/mnist or --data=$DATA_DIR/cifar10, so that the datasets are downloaded to the corresponding directories.

jukebox - Code for the paper "Jukebox: A Generative Model for Music"

  •    Python

The samples decoded from each level are stored in {name}/level_{level}. You can also view the samples as an html with the aligned lyrics under {name}/level_{level}/index.html. Run python -m http.server and open the html through the server to see the lyrics animate as the song plays. A summary of all sampling data including zs, x, labels and sampling_kwargs is stored in {name}/level_{level}/data.pth.tar. The hps are for a V100 GPU with 16 GB GPU memory. The 1b_lyrics, 5b, and 5b_lyrics top-level priors take up 3.8 GB, 10.3 GB, and 11.5 GB, respectively. The peak memory usage to store transformer key, value cache is about 400 MB for 1b_lyrics and 1 GB for 5b_lyrics per sample. If you are having trouble with CUDA OOM issues, try 1b_lyrics or decrease max_batch_size in, and --n_samples in the script call.

semi-supervised-pytorch - Implementations of different VAE-based semi-supervised and generative models in PyTorch

  •    Python

A PyTorch-based package containing useful models for modern deep semi-supervised learning and deep generative models. Want to jump right into it? Look into the notebooks. 2018.04.17 - The Gumbel softmax notebook has been added to show how you can use discrete latent variables in VAEs. 2018.02.28 - The β-VAE notebook was added to show how VAEs can learn disentangled representations.

Conditional-PixelCNN-decoder - Tensorflow implementation of Gated Conditional Pixel Convolutional Neural Network

  •    Python

This is a Tensorflow implementation of Conditional Image Generation with PixelCNN Decoders which introduces the Gated PixelCNN model based on PixelCNN architecture originally mentioned in Pixel Recurrent Neural Networks. The model can be conditioned on latent representation of labels or images to generate images accordingly. Images can also be modelled unconditionally. It can also act as a powerful decoder and can replace deconvolution (transposed convolution) in Autoencoders and GANs. A detailed summary of the paper can be found here. The gating accounts for remembering the context and model more complex interactions, like in LSTM. The network stack on the left is the Vertical stack that takes care of blind spots that occure while convolution due to the masking layer (Refer the Pixel RNN paper to know more about masking). Use of residual connection significantly improves the model performance.

gan - Tooling for GANs in TensorFlow

  •    Jupyter

TF-GAN is a lightweight library for training and evaluating Generative Adversarial Networks (GANs). At each stage, you can either use TF-GAN's convenience functions, or you can perform the step manually for fine-grained control.

Tensorflow-Programs-and-Tutorials - Implementations of CNNs, RNNs, GANs, etc

  •    Jupyter

CNN's with Noisy Labels - This notebook looks at a recent paper that discusses how convolutional neural networks that are trained on random labels (with some probability) are still able to acheive good accuracy on MNIST. I thought that the paper showed some eye-brow raising results, so I went ahead and tried it out for myself. It was pretty amazing to see that even when training a CNN with random labels 50% of the time, and the correct labels the other 50% of the time, the network was still able to get a 90+% accuracy. Character Level RNN (Work in Progress) - This notebook shows you how to train a character level RNN in Tensorflow. The idea was inspired by Andrej Karpathy's famous blog post and was based on this Keras implementation. In this notebook, you'll learn more about what the model is doing, and how you can input your own dataset, and train a model to generate similar looking text.

autoencoding_beyond_pixels - Generative image model with learned similarity measures

  •    Python

Implementation of the method described in our Arxiv paper. We present an autoencoder that leverages learned representations to better measure similarities in data space. By combining a variational autoencoder with a generative adversarial network we can use learned feature representations in the GAN discriminator as basis for the VAE reconstruction objective. Thereby, we replace element-wise errors with feature-wise errors to better capture the data distribution while offering invariance towards e.g. translation. We apply our method to images of faces and show that it outperforms VAEs with element-wise similarity measures in terms of visual fidelity. Moreover, we show that the method learns an embedding in which high-level abstract visual features (e.g. wearing glasses) can be modified using simple arithmetic.

node-tensorflow - Node.js + TensorFlow

  •    Javascript

TensorFlow is Google's machine learning runtime. It is implemented as C++ runtime, along with Python framework to support building a variety of models, especially neural networks for deep learning. It is interesting to be able to use TensorFlow in a node.js application using just JavaScript (or TypeScript if that's your preference). However, the Python functionality is vast (several ops, estimator implementations etc.) and continually expanding. Instead, it would be more practical to consider building Graphs and training models in Python, and then consuming those for runtime use-cases (like prediction or inference) in a pure node.js and Python-free deployment. This is what this node module enables.


  •    Python

TF-Slim is a lightweight library for defining, training and evaluating complex models in TensorFlow. Components of tf-slim can be freely mixed with native tensorflow, as well as other frameworks.. Note: Latest version of TF-Slim, 1.1.0, was tested with TF 1.15.2 py2, TF 2.0.1, TF 2.1 and TF 2.2.

generative-compression - TensorFlow Implementation of Generative Adversarial Networks for Extreme Learned Image Compression

  •    Python

TensorFlow Implementation for learned compression of images using Generative Adversarial Networks. The method was developed by Agustsson et. al. in Generative Adversarial Networks for Extreme Learned Image Compression. The proposed idea is very interesting and their approach is well-described. Training is conducted with batch size 1 and reconstructed samples / tensorboard summaries will be periodically written every certain number of steps (default is 128). Checkpoints are saved every 10 epochs.

gan-playground - GAN Playground - Experiment with Generative Adversarial Nets in your browser

  •    TypeScript

GAN Playground lets you play around with Generative Adversarial Networks right in your browser. Currently, it contains three built-in datasets: MNIST, Fashion MNIST, and CIFAR-10. GAN Playground provides you the ability to set your models' hyperparameters and build up your discriminator and generator layer-by-layer. You can observe the network learn in real time as the generator produces more and more realistic images, or more likely, gets stuck in failure modes such as mode collapse.

We have large collection of open source products. Follow the tags from Tag Cloud >>

Open source products are scattered around the web. Please provide information about the open source projects you own / you use. Add Projects.