Facial-Similarity-with-Siamese-Networks-in-Pytorch - Implementing Siamese networks with a contrastive loss for similarity learning

  •        383

The goal is to teach a siamese network to be able to distinguish pairs of images. This project uses pytorch. Any dataset can be used. Each class must be in its own folder. This is the same structure that PyTorch's own image folder dataset uses.

https://hackernoon.com/one-shot-learning-with-siamese-networks-in-pytorch-8ddaab10340e
https://github.com/harveyslash/Facial-Similarity-with-Siamese-Networks-in-Pytorch

Tags
Implementation
License
Platform

   




Related Projects

PyTorch-NLP - Supporting Rapid Prototyping with a Toolkit (incl. Datasets and Neural Network Layers)

  •    Python

PyTorch-NLP, or torchnlp for short, is a library of neural network layers, text processing modules and datasets designed to accelerate Natural Language Processing (NLP) research. Join our community, add datasets and neural network layers! Chat with us on Gitter and join the Google Group, we're eager to collaborate with you.

deep-learning-book - Repository for "Introduction to Artificial Neural Networks and Deep Learning: A Practical Guide with Applications in Python"

  •    Jupyter

Repository for the book Introduction to Artificial Neural Networks and Deep Learning: A Practical Guide with Applications in Python. Deep learning is not just the talk of the town among tech folks. Deep learning allows us to tackle complex problems, training artificial neural networks to recognize complex patterns for image and speech recognition. In this book, we'll continue where we left off in Python Machine Learning and implement deep learning algorithms in PyTorch.

PyTorch-Tutorial - Build your neural network easy and fast

  •    Jupyter

In these tutorials for pyTorch, we will build our first Neural Network and try to build some advanced Neural Network architectures developed recent years. Thanks for liufuyang's notebook files which is a great contribution to this tutorial.

PyTorch - Tensors and Dynamic neural networks in Python with strong GPU acceleration

  •    Python

PyTorch is a deep learning framework that puts Python first. It is a python package that provides Tensor computation (like numpy) with strong GPU acceleration, Deep Neural Networks built on a tape-based autograd system. You can reuse your favorite python packages such as numpy, scipy and Cython to extend PyTorch when needed.

face-alignment - :fire: 2D and 3D Face alignment library build using pytorch

  •    Python

Detect facial landmarks from Python using the world's most accurate face alignment network, capable of detecting points in both 2D and 3D coordinates. Build using FAN's state-of-the-art deep learning based face alignment method. For detecting faces the library makes use of dlib library.


T2F - T2F: text to face generation using Deep Learning

  •    Python

Text-to-Face generation using Deep Learning. This project combines two of the recent architectures StackGAN and ProGAN for synthesizing faces from textual descriptions. The project uses Face2Text dataset which contains 400 facial images and textual captions for each of them. The data can be obtained by contacting either the RIVAL group or the authors of the aforementioned paper. The code is present in the implementation/ subdirectory. The implementation is done using the PyTorch framework. So, for running this code, please install PyTorch version 0.4.0 before continuing.

ngraph - nGraph is an open source C++ library, compiler and runtime for Deep Learning frameworks

  •    C++

Welcome to the open-source repository for the Intel® nGraph™ Library. Our code base provides a Compiler and runtime suite of tools (APIs) designed to give developers maximum flexibility for their software design, allowing them to create or customize a scalable solution using any framework while also avoiding device-level hardware lock-in that is so common with many AI vendors. A neural network model compiled with nGraph can run on any of our currently-supported backends, and it will be able to run on any backends we support in the future with minimal disruption to your model. With nGraph, you can co-evolve your software and hardware's capabilities to stay at the forefront of your industry. The nGraph Compiler is Intel's graph compiler for Artificial Neural Networks. Documentation in this repo describes how you can program any framework to run training and inference computations on a variety of Backends including Intel® Architecture Processors (CPUs), Intel® Nervana™ Neural Network Processors (NNPs), cuDNN-compatible graphics cards (GPUs), custom VPUs like Movidius, and many others. The default CPU Backend also provides an interactive Interpreter mode that can be used to zero in on a DL model and create custom nGraph optimizations that can be used to further accelerate training or inference, in whatever scenario you need.

onnx - Open Neural Network Exchange

  •    PureBasic

Open Neural Network Exchange (ONNX) is the first step toward an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Initially we focus on the capabilities needed for inferencing (evaluation). Caffe2, PyTorch, Microsoft Cognitive Toolkit, Apache MXNet and other tools are developing ONNX support. Enabling interoperability between different frameworks and streamlining the path from research to production will increase the speed of innovation in the AI community. We are an early stage and we invite the community to submit feedback and help us further evolve ONNX.

pix2pixHD - Synthesizing and manipulating 2048x1024 images with conditional GANs

  •    Python

Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic image-to-image translation. It can be used for turning semantic label maps into photo-realistic images or synthesizing portraits from face label maps. High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs Ting-Chun Wang1, Ming-Yu Liu1, Jun-Yan Zhu2, Andrew Tao1, Jan Kautz1, Bryan Catanzaro1 1NVIDIA Corporation, 2UC Berkeley In arxiv, 2017.

distiller - Neural Network Distiller by Intel AI Lab: a Python package for neural network compression research

  •    Python

Distiller is an open-source Python package for neural network compression research. Network compression can reduce the memory footprint of a neural network, increase its inference speed and save energy. Distiller provides a PyTorch environment for prototyping and analyzing compression algorithms, such as sparsity-inducing methods and low-precision arithmetic.

LSTM-Human-Activity-Recognition - Human Activity Recognition example using TensorFlow on smartphone sensors dataset and an LSTM RNN (Deep Learning algo)

  •    Jupyter

Compared to a classical approach, using a Recurrent Neural Networks (RNN) with Long Short-Term Memory cells (LSTMs) require no or almost no feature engineering. Data can be fed directly into the neural network who acts like a black box, modeling the problem correctly. Other research on the activity recognition dataset can use a big amount of feature engineering, which is rather a signal processing approach combined with classical data science techniques. The approach here is rather very simple in terms of how much was the data preprocessed. Let's use Google's neat Deep Learning library, TensorFlow, demonstrating the usage of an LSTM, a type of Artificial Neural Network that can process sequential data / time series.

ignite - High-level library to help with training neural networks in PyTorch

  •    Python

Ignite is a high-level library to help with training neural networks in PyTorch. As you can see, the code is more concise and readable with ignite. Furthermore, adding additional metrics, or things like early stopping is a breeze in ignite, but can start to rapidly increase the complexity of your code when "rolling your own" training loop.

siamfc-tf - SiamFC tracking in TensorFlow.

  •    Python

TensorFlow port of the tracking method described in the paper Fully-Convolutional Siamese nets for object tracking. In particular, it is the improved version presented as baseline in End-to-end representation learning for Correlation Filter based tracking, which achieves state-of-the-art performance at high framerate. The other methods presented in the paper (similar performance, shallower network) haven't been ported yet.

node-facenet - Solve face verification, recognition and clustering problems: A TensorFlow backed FaceNet implementation for Node

  •    TypeScript

A TensorFlow backed FaceNet implementation for Node.js, which can solve face verification, recognition and clustering problems. FaceNet is a deep convolutional network designed by Google, trained to solve face verification, recognition and clustering problem with efficiently at scale.

NetDissect - Network Dissection http://netdissect

  •    Python

This repository contains the demo code for the CVPR'17 paper Network Dissection: Quantifying Interpretability of Deep Visual Representations. You can use this code with naive Caffe, with matcaffe and pycaffe compiled. We also provide a PyTorch wrapper to apply NetDissect to probe networks in PyTorch format. There are dissection results for several networks at the project page. Code to run network dissection on an arbitrary deep convolutional neural network provided as a Caffe deploy.prototxt and .caffemodel. The script rundissect.sh runs all the needed phases.

pytorch-tutorial - PyTorch Tutorial for Deep Learning Researchers

  •    Python

This repository provides tutorial code for deep learning researchers to learn PyTorch. In the tutorial, most of the models were implemented with less than 30 lines of code. Before starting this tutorial, it is recommended to finish Official Pytorch Tutorial.

DiscoGAN-pytorch - PyTorch implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

  •    Jupyter

PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. * All samples in README.md are genearted by neural network except the first image for each row. * Network structure is slightly diffferent (here) from the author's code.