LSTM-Human-Activity-Recognition - Human Activity Recognition example using TensorFlow on smartphone sensors dataset and an LSTM RNN (Deep Learning algo)

  •        84

Compared to a classical approach, using a Recurrent Neural Networks (RNN) with Long Short-Term Memory cells (LSTMs) require no or almost no feature engineering. Data can be fed directly into the neural network who acts like a black box, modeling the problem correctly. Other research on the activity recognition dataset can use a big amount of feature engineering, which is rather a signal processing approach combined with classical data science techniques. The approach here is rather very simple in terms of how much was the data preprocessed. Let's use Google's neat Deep Learning library, TensorFlow, demonstrating the usage of an LSTM, a type of Artificial Neural Network that can process sequential data / time series.



Related Projects

NCRFpp - NCRF++, an Open-source Neural Sequence Labeling Toolkit

  •    Python

Sequence labeling models are quite popular in many NLP tasks, such as Named Entity Recognition (NER), part-of-speech (POS) tagging and word segmentation. State-of-the-art sequence labeling models mostly utilize the CRF structure with input word features. LSTM (or bidirectional LSTM) is a popular deep learning based feature extractor in sequence labeling task. And CNN can also be used due to faster computation. Besides, features within word are also useful to represent word, which can be captured by character LSTM or character CNN structure or human-defined neural features. NCRF++ is a PyTorch based framework with flexiable choices of input features and output structures. The design of neural sequence labeling models with NCRF++ is fully configurable through a configuration file, which does not require any code work. NCRF++ is a neural version of CRF++, which is a famous statistical CRF framework.

Activity-Recognition-with-CNN-and-RNN - Temporal Segments LSTM and Temporal-Inception for Activity Recognition

  •    Lua

In this work, we demonstrate a strong baseline two-stream ConvNet using ResNet-101. We use this baseline to thoroughly examine the use of both RNNs and Temporal-ConvNets for extracting spatiotemporal information. Building upon our experimental results, we then propose and investigate two different networks to further integrate spatiotemporal information: 1) temporal segment RNN and 2) Inception-style Temporal-ConvNet. Our analysis identifies specific limitations for each method that could form the basis of future work. Our experimental results on UCF101 and HMDB51 datasets achieve state-of-the-art performances, 94.1% and 69.0%, respectively, without requiring extensive temporal augmentation.

t81_558_deep_learning - Washington University (in St

  •    Jupyter

Deep learning is a group of exciting new technologies for neural networks. Through a combination of advanced training techniques and neural network architectural components, it is now possible to create neural networks of much greater complexity. Deep learning allows a neural network to learn hierarchies of information in a way that is like the function of the human brain. This course will introduce the student to computer vision with Convolution Neural Networks (CNN), time series analysis with Long Short-Term Memory (LSTM), classic neural network structures and application to computer security. High Performance Computing (HPC) aspects will demonstrate how deep learning can be leveraged both on graphical processing units (GPUs), as well as grids. Focus is primarily upon the application of deep learning to problems, with some introduction mathematical foundations. Students will use the Python programming language to implement deep learning using Google TensorFlow and Keras. It is not necessary to know Python prior to this course; however, familiarity of at least one programming language is assumed. This course will be delivered in a hybrid format that includes both classroom and online instruction. This syllabus presents the expected class schedule, due dates, and reading assignments. Download current syllabus.

tensorflow-lstm-regression - Sequence prediction using recurrent neural networks(LSTM) with TensorFlow

  •    Jupyter

The objective is to predict continuous values, sin and cos functions in this example, based on previous observations using the LSTM architecture. This example has been updated with a new version compatible with the tensrflow-1.1.0. This new version is using a library polyaxon that provides an API to create deep learning models and experiments based on tensorflow.

RNNSharp - RNNSharp is a toolkit of deep recurrent neural network which is widely used for many different kinds of tasks, such as sequence labeling, sequence-to-sequence and so on

  •    CSharp

RNNSharp is a toolkit of deep recurrent neural network which is widely used for many different kinds of tasks, such as sequence labeling, sequence-to-sequence and so on. It's written by C# language and based on .NET framework 4.6 or above version. This page introduces what is RNNSharp, how it works and how to use it. To get the demo package, you can access release page.

tensorflow-image-detection - A generic image detection program that uses Google's Machine Learning library, Tensorflow and a pre-trained Deep Learning Convolutional Neural Network model called Inception

  •    Python

A generic image detection program that uses Google's Machine Learning library, Tensorflow and a pre-trained Deep Learning Convolutional Neural Network model called Inception. This model has been pre-trained for the ImageNet Large Visual Recognition Challenge using the data from 2012, and it can differentiate between 1,000 different classes, like Dalmatian, dishwasher etc. The program applies Transfer Learning to this existing model and re-trains it to classify a new set of images.

word-rnn-tensorflow - Multi-layer Recurrent Neural Networks (LSTM, RNN) for word-level language models in Python using TensorFlow

  •    Python

Multi-layer Recurrent Neural Networks (LSTM, RNN) for word-level language models in Python using TensorFlow. Mostly reused code from which was inspired from Andrej Karpathy's char-rnn.

tensorflow-speech-recognition - 🎙Speech recognition using the tensorflow deep learning framework, sequence-to-sequence neural networks

  •    Python

Speech recognition using google's tensorflow deep learning framework, sequence-to-sequence neural networks. Replaces caffe-speech-recognition, see there for some background.

easy-tensorflow - Simple and comprehensive tutorials in TensorFlow

  •    Python

The goal of this repository is to provide comprehensive tutorials for TensorFlow while maintaining the simplicity of the code. Each tutorial includes a detailed explanation (written in .ipynb) format, as well as the source code (in .py format).

deep-learning-book - Repository for "Introduction to Artificial Neural Networks and Deep Learning: A Practical Guide with Applications in Python"

  •    Jupyter

Repository for the book Introduction to Artificial Neural Networks and Deep Learning: A Practical Guide with Applications in Python. Deep learning is not just the talk of the town among tech folks. Deep learning allows us to tackle complex problems, training artificial neural networks to recognize complex patterns for image and speech recognition. In this book, we'll continue where we left off in Python Machine Learning and implement deep learning algorithms in PyTorch.

Conditional-PixelCNN-decoder - Tensorflow implementation of Gated Conditional Pixel Convolutional Neural Network

  •    Python

This is a Tensorflow implementation of Conditional Image Generation with PixelCNN Decoders which introduces the Gated PixelCNN model based on PixelCNN architecture originally mentioned in Pixel Recurrent Neural Networks. The model can be conditioned on latent representation of labels or images to generate images accordingly. Images can also be modelled unconditionally. It can also act as a powerful decoder and can replace deconvolution (transposed convolution) in Autoencoders and GANs. A detailed summary of the paper can be found here. The gating accounts for remembering the context and model more complex interactions, like in LSTM. The network stack on the left is the Vertical stack that takes care of blind spots that occure while convolution due to the masking layer (Refer the Pixel RNN paper to know more about masking). Use of residual connection significantly improves the model performance.

char-rnn - Multi-layer Recurrent Neural Networks (LSTM, GRU, RNN) for character-level language models in Torch

  •    Lua

This code implements multi-layer Recurrent Neural Network (RNN, LSTM, and GRU) for training/sampling from character-level language models. In other words the model takes one text file as input and trains a Recurrent Neural Network that learns to predict the next character in a sequence. The RNN can then be used to generate text character by character that will look like the original training data. The context of this code base is described in detail in my blog post. If you are new to Torch/Lua/Neural Nets, it might be helpful to know that this code is really just a slightly more fancy version of this 100-line gist that I wrote in Python/numpy. The code in this repo additionally: allows for multiple layers, uses an LSTM instead of a vanilla RNN, has more supporting code for model checkpointing, and is of course much more efficient since it uses mini-batches and can run on a GPU.

emotion-recognition-neural-networks - Emotion recognition using DNN with tensorflow

  •    Python

This repository is the out project about mood recognition using convolutional neural network for the course Seminar Neural Networks at TU Delft. We use the FER-2013 Faces Database, a set of 28,709 pictures of people displaying 7 emotional expressions (angry, disgusted, fearful, happy, sad, surprised and neutral).

char-rnn-tensorflow - Multi-layer Recurrent Neural Networks (LSTM, RNN) for character-level language models in Python using Tensorflow

  •    Python

Multi-layer Recurrent Neural Networks (LSTM, RNN) for character-level language models in Python using Tensorflow. Inspired from Andrej Karpathy's char-rnn.

tflearn - Deep learning library featuring a higher-level API for TensorFlow.

  •    Python

TFlearn is a modular and transparent deep learning library built on top of Tensorflow. It was designed to provide a higher-level API to TensorFlow in order to facilitate and speed-up experimentations, while remaining fully transparent and compatible with it. The high-level API currently supports most of recent deep learning models, such as Convolutions, LSTM, BiRNN, BatchNorm, PReLU, Residual networks, Generative networks... In the future, TFLearn is also intended to stay up-to-date with latest deep learning techniques.

Kur - Descriptive Deep Learning

  •    Python

Kur is a system for quickly building and applying state-of-the-art deep learning models to new and exciting problems. Kur was designed to appeal to the entire machine learning community, from novices to veterans. It uses specification files that are simple to read and author, meaning that you can get started building sophisticated models without ever needing to code. Even so, Kur exposes a friendly and extensible API to support advanced deep learning architectures or workflows.

Skater - Python Library for Model Interpretation/Explanations

  •    Python

Skater is a unified framework to enable Model Interpretation for all forms of model to help one build an Interpretable machine learning system often needed for real world use-cases(** we are actively working towards to enabling faithful interpretability for all forms models). It is an open source python library designed to demystify the learned structures of a black box model both globally(inference on the basis of a complete data set) and locally(inference about an individual prediction). The project was started as a research idea to find ways to enable better interpretability(preferably human interpretability) to predictive "black boxes" both for researchers and practioners. The project is still in beta phase.

rwa - Machine Learning on Sequential Data Using a Recurrent Weighted Average

  •    Python

This repository holds the code to a new kind of RNN model for processing sequential data. The model computes a recurrent weighted average (RWA) over every previous processing step. With this approach, the model can form direct connections anywhere along a sequence. This stands in contrast to traditional RNN architectures that only use the previous processing step. A detailed description of the RWA model has been published in a manuscript at Because the RWA can be computed as a running average, it does not need to be completely recomputed with each processing step. The numerator and denominator can be saved from the previous step. Consequently, the model scales like that of other RNN models such as the LSTM model.