- 84

Compared to a classical approach, using a Recurrent Neural Networks (RNN) with Long Short-Term Memory cells (LSTMs) require no or almost no feature engineering. Data can be fed directly into the neural network who acts like a black box, modeling the problem correctly. Other research on the activity recognition dataset can use a big amount of feature engineering, which is rather a signal processing approach combined with classical data science techniques. The approach here is rather very simple in terms of how much was the data preprocessed. Let's use Google's neat Deep Learning library, TensorFlow, demonstrating the usage of an LSTM, a type of Artificial Neural Network that can process sequential data / time series.

http://www.neuraxio.com/en/https://github.com/guillaume-chevalier/LSTM-Human-Activity-Recognition

Tags | machine-learning deep-learning lstm human-activity-recognition neural-network rnn recurrent-neural-networks tensorflow activity-recognition |

Implementation | Jupyter Notebook |

License | MIT |

Platform |

Sequence labeling models are quite popular in many NLP tasks, such as Named Entity Recognition (NER), part-of-speech (POS) tagging and word segmentation. State-of-the-art sequence labeling models mostly utilize the CRF structure with input word features. LSTM (or bidirectional LSTM) is a popular deep learning based feature extractor in sequence labeling task. And CNN can also be used due to faster computation. Besides, features within word are also useful to represent word, which can be captured by character LSTM or character CNN structure or human-defined neural features. NCRF++ is a PyTorch based framework with flexiable choices of input features and output structures. The design of neural sequence labeling models with NCRF++ is fully configurable through a configuration file, which does not require any code work. NCRF++ is a neural version of CRF++, which is a famous statistical CRF framework.

pytorch ner sequence-labeling crf lstm-crf char-rnn char-cnn named-entity-recognition part-of-speech-tagger chunking neural-networks nbest lstm cnn batchIn this work, we demonstrate a strong baseline two-stream ConvNet using ResNet-101. We use this baseline to thoroughly examine the use of both RNNs and Temporal-ConvNets for extracting spatiotemporal information. Building upon our experimental results, we then propose and investigate two different networks to further integrate spatiotemporal information: 1) temporal segment RNN and 2) Inception-style Temporal-ConvNet. Our analysis identifies specific limitations for each method that could form the basis of future work. Our experimental results on UCF101 and HMDB51 datasets achieve state-of-the-art performances, 94.1% and 69.0%, respectively, without requiring extensive temporal augmentation.

activity-recognition video-understanding torch lstm-neural-networks convolutional-neural-networksDeep learning is a group of exciting new technologies for neural networks. Through a combination of advanced training techniques and neural network architectural components, it is now possible to create neural networks of much greater complexity. Deep learning allows a neural network to learn hierarchies of information in a way that is like the function of the human brain. This course will introduce the student to computer vision with Convolution Neural Networks (CNN), time series analysis with Long Short-Term Memory (LSTM), classic neural network structures and application to computer security. High Performance Computing (HPC) aspects will demonstrate how deep learning can be leveraged both on graphical processing units (GPUs), as well as grids. Focus is primarily upon the application of deep learning to problems, with some introduction mathematical foundations. Students will use the Python programming language to implement deep learning using Google TensorFlow and Keras. It is not necessary to know Python prior to this course; however, familiarity of at least one programming language is assumed. This course will be delivered in a hybrid format that includes both classroom and online instruction. This syllabus presents the expected class schedule, due dates, and reading assignments. Download current syllabus.

neural-network machine-learning tensorflow keras deeplearningThe objective is to predict continuous values, sin and cos functions in this example, based on previous observations using the LSTM architecture. This example has been updated with a new version compatible with the tensrflow-1.1.0. This new version is using a library polyaxon that provides an API to create deep learning models and experiments based on tensorflow.

lstm tensorflow recurrent-networks deep-learning sequence-prediction tensorflow-lstm-regression jupyter time-series recurrent-neural-networksRNNSharp is a toolkit of deep recurrent neural network which is widely used for many different kinds of tasks, such as sequence labeling, sequence-to-sequence and so on. It's written by C# language and based on .NET framework 4.6 or above version. This page introduces what is RNNSharp, how it works and how to use it. To get the demo package, you can access release page.

rnn crf deep-learning machine-learning c-sharp sequence-labeling rnn-model recurrent-neural-networks nlp lstmA generic image detection program that uses Google's Machine Learning library, Tensorflow and a pre-trained Deep Learning Convolutional Neural Network model called Inception. This model has been pre-trained for the ImageNet Large Visual Recognition Challenge using the data from 2012, and it can differentiate between 1,000 different classes, like Dalmatian, dishwasher etc. The program applies Transfer Learning to this existing model and re-trains it to classify a new set of images.

image-detection machine-learning deep-learning deep-neural-networks convolutional-neural-networks tensorflowMulti-layer Recurrent Neural Networks (LSTM, RNN) for word-level language models in Python using TensorFlow. Mostly reused code from https://github.com/sherjilozair/char-rnn-tensorflow which was inspired from Andrej Karpathy's char-rnn.

rnn tensorflow rnn-tensorflow lstmbrain.js is a library of Neural Networks written in JavaScript. ðŸ’¡ Note: This is a continuation of the harthur/brain repository (which is not maintained anymore). For more details, check out this issue.

neural-network brain recurrent-neural-networks easy-to-use api web nodejs browser convolutional-neural-networks node stream ai artificial-intelligence brainjs brain.js feed-forward classifier neural network neural-networks machine-learning synapse recurrent long-short-term-memory gated-recurrent-unit rnn lstm gruSpeech recognition using google's tensorflow deep learning framework, sequence-to-sequence neural networks. Replaces caffe-speech-recognition, see there for some background.

tensorflow speech-recognition neural-network deep-learning stt speech-to-textThe goal of this repository is to provide comprehensive tutorials for TensorFlow while maintaining the simplicity of the code. Each tutorial includes a detailed explanation (written in .ipynb) format, as well as the source code (in .py format).

deep-learning tensorflow reinforcement-learning machine-learning pattern-recognition object-detection convolutional-neural-networks recurrent-neural-networks neural-networkRepository for the book Introduction to Artificial Neural Networks and Deep Learning: A Practical Guide with Applications in Python. Deep learning is not just the talk of the town among tech folks. Deep learning allows us to tackle complex problems, training artificial neural networks to recognize complex patterns for image and speech recognition. In this book, we'll continue where we left off in Python Machine Learning and implement deep learning algorithms in PyTorch.

deep-learning neural-network machine-learning tensorflow artificial-intelligence data-science pytorchThis is a Tensorflow implementation of Conditional Image Generation with PixelCNN Decoders which introduces the Gated PixelCNN model based on PixelCNN architecture originally mentioned in Pixel Recurrent Neural Networks. The model can be conditioned on latent representation of labels or images to generate images accordingly. Images can also be modelled unconditionally. It can also act as a powerful decoder and can replace deconvolution (transposed convolution) in Autoencoders and GANs. A detailed summary of the paper can be found here. The gating accounts for remembering the context and model more complex interactions, like in LSTM. The network stack on the left is the Vertical stack that takes care of blind spots that occure while convolution due to the masking layer (Refer the Pixel RNN paper to know more about masking). Use of residual connection significantly improves the model performance.

deep-learning generative-algorithm paper convolution deepmind tensorflowSome examples require MNIST dataset for training and testing. Don't worry, this dataset will automatically be downloaded when running examples (with input_data.py). MNIST is a database of handwritten digits, for a quick description of that dataset, you can check this notebook.

recurrent-neural-networks convolutional-neural-networks deep-learning-tutorial tensorflow tensorlayer keras deep-reinforcement-learning tensorflow-tutorials deep-learning machine-learning notebook autoencoder multi-layer-perceptron reinforcement-learning tflearn neural-networks neural-network neural-machine-translation nlp cnnThis code implements multi-layer Recurrent Neural Network (RNN, LSTM, and GRU) for training/sampling from character-level language models. In other words the model takes one text file as input and trains a Recurrent Neural Network that learns to predict the next character in a sequence. The RNN can then be used to generate text character by character that will look like the original training data. The context of this code base is described in detail in my blog post. If you are new to Torch/Lua/Neural Nets, it might be helpful to know that this code is really just a slightly more fancy version of this 100-line gist that I wrote in Python/numpy. The code in this repo additionally: allows for multiple layers, uses an LSTM instead of a vanilla RNN, has more supporting code for model checkpointing, and is of course much more efficient since it uses mini-batches and can run on a GPU.

This repository is the out project about mood recognition using convolutional neural network for the course Seminar Neural Networks at TU Delft. We use the FER-2013 Faces Database, a set of 28,709 pictures of people displaying 7 emotional expressions (angry, disgusted, fearful, happy, sad, surprised and neutral).

emotion-recognition tensorflow machine-learning deep-neural-networks convolutional-neural-networksMulti-layer Recurrent Neural Networks (LSTM, RNN) for character-level language models in Python using Tensorflow. Inspired from Andrej Karpathy's char-rnn.

TFlearn is a modular and transparent deep learning library built on top of Tensorflow. It was designed to provide a higher-level API to TensorFlow in order to facilitate and speed-up experimentations, while remaining fully transparent and compatible with it. The high-level API currently supports most of recent deep learning models, such as Convolutions, LSTM, BiRNN, BatchNorm, PReLU, Residual networks, Generative networks... In the future, TFLearn is also intended to stay up-to-date with latest deep learning techniques.

tflearn tensorflow neural-network deep-learning machine-learning data-scienceKur is a system for quickly building and applying state-of-the-art deep learning models to new and exciting problems. Kur was designed to appeal to the entire machine learning community, from novices to veterans. It uses specification files that are simple to read and author, meaning that you can get started building sophisticated models without ever needing to code. Even so, Kur exposes a friendly and extensible API to support advanced deep learning architectures or workflows.

deep-learning deep-neural-networks speech-recognition deep-learning-tutorial machine-learning neural-networks neural-network image-recognition speech-to-textSkater is a unified framework to enable Model Interpretation for all forms of model to help one build an Interpretable machine learning system often needed for real world use-cases(** we are actively working towards to enabling faithful interpretability for all forms models). It is an open source python library designed to demystify the learned structures of a black box model both globally(inference on the basis of a complete data set) and locally(inference about an individual prediction). The project was started as a research idea to find ways to enable better interpretability(preferably human interpretability) to predictive "black boxes" both for researchers and practioners. The project is still in beta phase.

ml predictive-modeling machine-learning modeling-tools model-interpretation blackbox datascience model-explanation explanation-system deep-learning deep-neural-networks attribution lstm-neural-networks cnn-classificationThis repository holds the code to a new kind of RNN model for processing sequential data. The model computes a recurrent weighted average (RWA) over every previous processing step. With this approach, the model can form direct connections anywhere along a sequence. This stands in contrast to traditional RNN architectures that only use the previous processing step. A detailed description of the RWA model has been published in a manuscript at https://arxiv.org/pdf/1703.01253.pdf. Because the RWA can be computed as a running average, it does not need to be completely recomputed with each processing step. The numerator and denominator can be saved from the previous step. Consequently, the model scales like that of other RNN models such as the LSTM model.

recurrent-neural-networks sequential-data time-series research rwa-model recurrent-weighted-average deep-memory
We have large collection of open source products. Follow the tags from
Tag Cloud >>

Open source products are scattered around the web. Please provide information
about the open source projects you own / you use.
**Add Projects.**