Reinforcement-Learning-Cheat-Sheet - Reinforcement Learning Cheat Sheet

  •        303

Cheatsheet for basic Reinforcement Learning concepts and methods.

https://github.com/FrancescoSaverioZuppichini/Reinforcement-Learning-Cheat-Sheet

Tags
Implementation
License
Platform

   




Related Projects

ai-resources - Selection of resources to learn Artificial Intelligence / Machine Learning / Statistical Inference / Deep Learning / Reinforcement Learning

  •    

Update April 2017: It’s been almost a year since I posted this list of resources, and over the year there’s been an explosion of articles, videos, books, tutorials etc on the subject — even an explosion of ‘lists of resources’ such as this one. It’s impossible for me to keep this up to date. However, the one resource I would like to add is https://ml4a.github.io/ (https://github.com/ml4a) led by Gene Kogan. It’s specifically aimed at artists and the creative coding community. This is a very incomplete and subjective selection of resources to learn about the algorithms and maths of Artificial Intelligence (AI) / Machine Learning (ML) / Statistical Inference (SI) / Deep Learning (DL) / Reinforcement Learning (RL). It is aimed at beginners (those without Computer Science background and not knowing anything about these subjects) and hopes to take them to quite advanced levels (able to read and understand DL papers). It is not an exhaustive list and only contains some of the learning materials that I have personally completed so that I can include brief personal comments on them. It is also by no means the best path to follow (nowadays most MOOCs have full paths all the way from basic statistics and linear algebra to ML/DL). But this is the path I took and in a sense it's a partial documentation of my personal journey into DL (actually I bounced around all of these back and forth like crazy). As someone who has no formal background in Computer Science (but has been programming for many years), the language, notation and concepts of ML/SI/DL and even CS was completely alien to me, and the learning curve was not only steep, but vertical, treacherous and slippery like ice.

tensorlayer - Deep Learning and Reinforcement Learning Library for Developers and Scientists

  •    Python

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides a large collection of customizable neural layers / functions that are key to build real-world AI applications. TensorLayer is awarded the 2017 Best Open Source Software by the ACM Multimedia Society. Simplicity : TensorLayer lifts the low-level dataflow interface of TensorFlow to high-level layers / models. It is very easy to learn through the rich example codes contributed by a wide community.

basic_reinforcement_learning - An introduction series to Reinforcement Learning (RL) with comprehensive step-by-step tutorials

  •    Jupyter

This repository aims to provide an introduction series to reinforcement learning (RL) by delivering a walkthough on how to code different RL techniques. A quick background review of RL is available here.

rex-gym - OpenAI Gym environments for an open-source quadruped robot (SpotMicro)

  •    Python

The goal of this project is to train an open-source 3D printed quadruped robot exploring Reinforcement Learning and OpenAI Gym. The aim is to let the robot learns domestic and generic tasks in the simulations and then successfully transfer the knowledge (Control Policies) on the real robot without any other manual tuning. This project is mostly inspired by the incredible works done by Boston Dynamics.


agents - Efficient Batched Reinforcement Learning in TensorFlow

  •    Python

This project provides optimized infrastructure for reinforcement learning. It extends the OpenAI gym interface to multiple parallel environments and allows agents to be implemented in TensorFlow and perform batched computation. As a starting point, we provide BatchPPO, an optimized implementation of Proximal Policy Optimization. The algorithm to use is defined in the configuration and pendulum started here uses the included PPO implementation. Check out more pre-defined configurations in agents/scripts/configs.py.

batch-ppo - Efficient Batched Reinforcement Learning in TensorFlow

  •    Python

This project provides optimized infrastructure for reinforcement learning. It extends the OpenAI gym interface to multiple parallel environments and allows agents to be implemented in TensorFlow and perform batched computation. As a starting point, we provide BatchPPO, an optimized implementation of Proximal Policy Optimization. The algorithm to use is defined in the configuration and pendulum started here uses the included PPO implementation. Check out more pre-defined configurations in agents/scripts/configs.py.

reinforcement-learning-an-introduction - Python Implementation of Reinforcement Learning: An Introduction

  •    Python

If you have any confusion about the code or want to report a bug, please open an issue instead of emailing me directly, and unfortunately I do not have exercise answers for the book. If you want to contribute some missing examples or fix some bugs, feel free to open an issue or make a pull request.

Hands-On-Reinforcement-Learning-With-Python - Master Reinforcement and Deep Reinforcement Learning using OpenAI Gym and TensorFlow

  •    Jupyter

Reinforcement Learning with Python will help you to master basic reinforcement learning algorithms to the advanced deep reinforcement learning algorithms. The book starts with an introduction to Reinforcement Learning followed by OpenAI and Tensorflow. You will then explore various RL algorithms and concepts such as the Markov Decision Processes, Monte-Carlo methods, and dynamic programming, including value and policy iteration. This example-rich guide will introduce you to deep learning, covering various deep learning algorithms. You will then explore deep reinforcement learning in depth, which is a combination of deep learning and reinforcement learning. You will master various deep reinforcement learning algorithms such as DQN, Double DQN. Dueling DQN, DRQN, A3C, DDPG, TRPO, and PPO. You will also learn about recent advancements in reinforcement learning such as imagination augmented agents, learn from human preference, DQfD, HER and many more.

ELF - An End-To-End, Lightweight and Flexible Platform for Game Research

  •    C++

ELF is an Extensive, Lightweight and Flexible platform for game research, in particular for real-time strategy (RTS) games. On the C++-side, ELF hosts multiple games in parallel with C++ threading. On the Python side, ELF returns one batch of game state at a time, making it very friendly for modern RL. In comparison, other platforms (e.g., OpenAI Gym) wraps one single game instance with one Python interface. This makes concurrent game execution a bit complicated, which is a requirement of many modern reinforcement learning algorithms. Besides, ELF now also provides a Python version for running concurrent game environments, by Python multiprocessing with ZeroMQ inter-process communication. See ./ex_elfpy.py for a simple example.

AirSim - Open source simulator based on Unreal Engine for autonomous vehicles from Microsoft AI & Research

  •    C++

AirSim is a simulator for drones (and soon other vehicles) built on Unreal Engine. It is open-source, cross platform and supports hardware-in-loop with popular flight controllers such as PX4 for physically and visually realistic simulations. It is developed as an Unreal plugin that can simply be dropped in to any Unreal environment you want.

recsim - A Configurable Recommender Systems Simulation Platform

  •    Python

RecSim is a configurable platform for authoring simulation environments for recommender systems (RSs) that naturally supports sequential interaction with users. RecSim allows the creation of new environments that reflect particular aspects of user behavior and item structure at a level of abstraction well-suited to pushing the limits of current reinforcement learning (RL) and RS techniques in sequential interactive recommendation problems. Environments can be easily configured that vary assumptions about: user preferences and item familiarity; user latent state and its dynamics; and choice models and other user response behavior. We outline how RecSim offers value to RL and RS researchers and practitioners, and how it can serve as a vehicle for academic-industrial collaboration. For a detailed description of the RecSim architecture please read Ie et al. Please cite the paper if you use the code from this repository in your work. This is not an officially supported Google product.

RLzoo - A Comprehensive Reinforcement Learning Zoo for Simple Usage 🚀

  •    Python

RLzoo is a collection of the most practical reinforcement learning algorithms, frameworks and applications. It is implemented with Tensorflow 2.0 and API of neural network layers in TensorLayer 2, to provide a hands-on fast-developing approach for reinforcement learning practices and benchmarks. It supports basic toy-tests like OpenAI Gym and DeepMind Control Suite with very simple configurations. Moreover, RLzoo supports robot learning benchmark environment RLBench based on Vrep/Pyrep simulator. Other large-scale distributed training framework for more realistic scenarios with Unity 3D, Mujoco, Bullet Physics, etc, will be supported in the future. A Springer textbook is also provided, you can get the free PDF if your institute has Springer license. Different from RLzoo for simple usage with high-level APIs, we also have a RL tutorial that aims to make the reinforcement learning tutorial simple, transparent and straight-forward with low-level APIs, as this would not only benefits new learners of reinforcement learning, but also provide convenience for senior researchers to testify their new ideas quickly.

dissecting-reinforcement-learning - Python code, PDFs and resources for the series of posts on Reinforcement Learning which I published on my personal blog

  •    Python

This repository contains the code and pdf of a series of blog post called "dissecting reinforcement learning" which I published on my blog mpatacchiola.io/blog. Moreover there are links to resources that can be useful for a reinforcement learning practitioner. If you have some good references which may be of interest please send me a pull request and I will integrate them in the README. The source code is contained in src with the name of the subfolders following the post number. In pdf there are the A3 documents of each post for offline reading. In images there are the raw svg file containing the images used in each post.

deep-reinforcement-learning - Repo for the Deep Reinforcement Learning Nanodegree program

  •    Jupyter

This repository contains material related to Udacity's Deep Reinforcement Learning Nanodegree program. The tutorials lead you through implementing various algorithms in reinforcement learning. All of the code is in PyTorch (v0.4) and Python 3.

coach - Reinforcement Learning Coach by Intel AI Lab enables easy experimentation with state of the art Reinforcement Learning algorithms

  •    Python

Coach is a python reinforcement learning framework containing implementation of many state-of-the-art algorithms. It exposes a set of easy-to-use APIs for experimenting with new RL algorithms, and allows simple integration of new environments to solve. Basic RL components (algorithms, environments, neural network architectures, exploration policies, ...) are well decoupled, so that extending and reusing existing components is fairly painless.






We have large collection of open source products. Follow the tags from Tag Cloud >>


Open source products are scattered around the web. Please provide information about the open source projects you own / you use. Add Projects.