mlens - ML-Ensemble – high performance ensemble learning

  •        17

ML-Ensemble combines a Scikit-learn high-level API with a low-level computational graph framework to build memory efficient, maximally parallelized ensemble networks in as few lines of codes as possible. ML-Ensemble is thread safe as long as base learners are and can fall back on memory mapped multiprocessing for memory-neutral process-based concurrency. For tutorials and full documentation, visit the project website.

http://ml-ensemble.com
https://github.com/flennerhag/mlens

Tags
Implementation
License
Platform

   




Related Projects

xcessiv - A web-based application for quick, scalable, and automated hyperparameter tuning and stacked ensembling in Python

  •    Python

Stacked ensembles are simple in theory. You combine the predictions of smaller models and feed those into another model. However, in practice, implementing them can be a major headache. Xcessiv holds your hand through all the implementation details of creating and optimizing stacked ensembles so you're free to fully define only the things you care about.

elf-project

  •    C++

The name stands for ensemble learning framework. It is a collection of machine learning algorithms for classification and regression with the possibility of connecting them together via ensemble learning. It is written in C++.

Java Machine Learning Library

  •    Java

Java Machine Learning Library is a library of machine learning algorithms and related datasets. Machine learning techniques include: clustering, classification, feature selection, regression, data pre-processing, ensemble learning, voting, ...

useR-machine-learning-tutorial - useR! 2016 Tutorial: Machine Learning Algorithmic Deep Dive http://user2016

  •    Jupyter

Instructions for how to install the necessary software for this tutorial is available here. Data for the tutorial can be downloaded by running ./data/get-data.sh (requires wget). Certain algorithms don't scale well when there are millions of features. For example, decision trees require computing some sort of metric (to determine the splits) on all the feature values (or some fraction of the values as in Random Forest and Stochastic GBM). Therefore, computation time is linear in the number of features. Other algorithms, such as GLM, scale much better to high-dimensional (n << p) and wide data with appropriate regularization (e.g. Lasso, Elastic Net, Ridge).


brushfire - Distributed decision tree ensemble learning in Scala

  •    Scala

Brushfire is a framework for distributed supervised learning of decision tree ensemble models in Scala.The basic approach to distributed tree learning is inspired by Google's PLANET, but considerably generalized thanks to Scala's type parameterization and Algebird's aggregation abstractions.

mlr - mlr: Machine Learning in R

  •    R

Please cite our JMLR paper [bibtex]. Some parts of the package were created as part of other publications. If you use these parts, please cite the relevant work appropriately. An overview of all mlr related publications can be found here.

OpenDT

  •    C

A fast decision tree program featuring distributed ensemble learning across multiple processors using MPI. Has been run on 1 cpu, small clusters, and the ASCI Blue supercomputer. Ensembles are often more accurate than their single classifier counterparts

CloudForest - Ensembles of decision trees in go/golang.

  •    Go

Fast, flexible, multi-threaded ensembles of decision trees for machine learning in pure Go (golang).It can achieve quicker training times then many other popular implementations on some datasets. This is the result of cpu cache friendly memory utilization well suited to modern processors and separate, optimized paths to learn splits from binary, numerical and categorical data.

dist-keras - Distributed Deep Learning, with a focus on distributed training, using Keras and Apache Spark

  •    Python

Distributed Deep Learning with Apache Spark and Keras. Distributed Keras is a distributed deep learning framework built op top of Apache Spark and Keras, with a focus on "state-of-the-art" distributed optimization algorithms. We designed the framework in such a way that a new distributed optimizer could be implemented with ease, thus enabling a person to focus on research. Several distributed methods are supported, such as, but not restricted to, the training of ensembles and models using data parallel methods.

gorgonia - Gorgonia is a library that helps facilitate machine learning in Go.

  •    Go

Gorgonia is a library that helps facilitate machine learning in Go. Write and evaluate mathematical equations involving multidimensional arrays easily. If this sounds like Theano or TensorFlow, it's because the idea is quite similar. Specifically, the library is pretty low-level, like Theano, but has higher goals like Tensorflow.The main reason to use Gorgonia is developer comfort. If you're using a Go stack extensively, now you have access to the ability to create production-ready machine learning systems in an environment that you are already familiar and comfortable with.

gorgonia - Gorgonia is a library that helps facilitate machine learning in Go.

  •    Go

Gorgonia is a library that helps facilitate machine learning in Go. Write and evaluate mathematical equations involving multidimensional arrays easily. If this sounds like Theano or TensorFlow, it's because the idea is quite similar. Specifically, the library is pretty low-level, like Theano, but has higher goals like Tensorflow. The main reason to use Gorgonia is developer comfort. If you're using a Go stack extensively, now you have access to the ability to create production-ready machine learning systems in an environment that you are already familiar and comfortable with.

juice - The Hacker's Machine Learning Engine (formerly known as leaf)

  •    Rust

Juice is a open Machine Learning Framework for hackers to build classical, deep or hybrid machine learning applications. It was inspired by the brilliant people behind TensorFlow, Torch, Caffe, Rust and numerous research papers and brings modularity, performance and portability to deep learning. Juice has one of the simplest APIs, is lean and tries to introduce minimal technical debt to your stack.

Pyod - A Python Toolkit for Scalable Outlier Detection (Anomaly Detection)

  •    Python

Important Notes: PyOD contains some neural network based models, e.g., AutoEncoders, which are implemented in keras. However, PyOD would NOT install keras and tensorflow automatically. This would reduce the risk of damaging your local installations. You are responsible for installing keras and tensorflow if you want to use neural net based models. An instruction is provided here. Anomaly detection resources, e.g., courses, books, papers and videos.

h2o-tutorials - Tutorials and training material for the H2O Machine Learning Platform

  •    Jupyter

This document contains tutorials and training materials for H2O-3. If you find any problems with the tutorial code, please open an issue in this repository. For general H2O questions, please post those to Stack Overflow using the "h2o" tag or join the H2O Stream Google Group for questions that don't fit into the Stack Overflow format.

practical-machine-learning-with-python - Master the essential skills needed to recognize and solve complex real-world problems with Machine Learning and Deep Learning by leveraging the highly popular Python Machine Learning Eco-system

  •    Jupyter

"Data is the new oil" is a saying which you must have heard by now along with the huge interest building up around Big Data and Machine Learning in the recent past along with Artificial Intelligence and Deep Learning. Besides this, data scientists have been termed as having "The sexiest job in the 21st Century" which makes it all the more worthwhile to build up some valuable expertise in these areas. Getting started with machine learning in the real world can be overwhelming with the vast amount of resources out there on the web. "Practical Machine Learning with Python" follows a structured and comprehensive three-tiered approach packed with concepts, methodologies, hands-on examples, and code. This book is packed with over 500 pages of useful information which helps its readers master the essential skills needed to recognize and solve complex problems with Machine Learning and Deep Learning by following a data-driven mindset. By using real-world case studies that leverage the popular Python Machine Learning ecosystem, this book is your perfect companion for learning the art and science of Machine Learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute Machine Learning systems and projects successfully.

Math-of-Machine-Learning-Course-by-Siraj - Implements common data science methods and machine learning algorithms from scratch in python

  •    Jupyter

This repository was initially created to submit machine learning assignments for Siraj Raval's online machine learning course. The purpose of the course was to learn how to implement the most common machine learning algorithms from scratch (without using machine learning libraries such as tensorflow, PyTorch, scikit-learn, etc). Although that course has ended now, I am continuing to learn data science and machine learning from other sources such as Coursera, online blogs, and attending machine learning lectures at University of Toronto. Sticking to the theme of implementing machine learning algortihms from scratch, I will continue to post detailed notebooks in python here as I learn more.

Conjecture - Scalable Machine Learning in Scalding

  •    Java

Conjecture is a framework for building machine learning models in Hadoop using the Scalding DSL. The goal of this project is to enable the development of statistical models as viable components in a wide range of product settings. Applications include classification and categorization, recommender systems, ranking, filtering, and regression (predicting real-valued numbers). Conjecture has been designed with a primary emphasis on flexibility and can handle a wide variety of inputs. Integration with Hadoop and scalding enable seamless handling of extremely large data volumes, and integration with established ETL processes. Predicted labels can either be consumed directly by the web stack using the dataset loader, or models can be deployed and consumed by live web code. Currently, binary classification (assigning one of two possible labels to input data points) is the most mature component of the Conjecture package.There are a few stages involved in training a machine learning model using Conjecture.

leaf - Open Machine Intelligence Framework for Hackers. (GPU/CPU)

  •    Rust

Leaf is a open Machine Learning Framework for hackers to build classical, deep or hybrid machine learning applications. It was inspired by the brilliant people behind TensorFlow, Torch, Caffe, Rust and numerous research papers and brings modularity, performance and portability to deep learning. Leaf has one of the simplest APIs, is lean and tries to introduce minimal technical debt to your stack.