image-to-3d-bbox - Build a CNN network to predict 3D bounding box of car from 2D image.

  •        12

This is an implementation in Keras of the paper "3D Bounding Box Estimation Using Deep Learning and Geometry" (https://arxiv.org/abs/1612.00496).

https://experiencor.github.io/sdc_3d.html
https://github.com/experiencor/image-to-3d-bbox

Tags
Implementation
License
Platform

   




Related Projects

self-driving-toy-car - A self driving toy car using end-to-end learning

  •    Jupyter

To make a lane follower based on a standard RC car using Raspberry Pi and a camera. The software is a simple Convolutional Network, which takes in the image fetched from the camera and outputs the steering angle. During data collection, we will simply hook the steering PWM of the car to pin GPIO17. The script raspberry_pi/collect_data.py will record the values of steering PWM and the associated images. The data of each trial are collectively stored in driving_trial_*. The trial folders are automatically numbered.

CarND-Vehicle-Detection - Vehicle detection using YOLO in Keras runs at 21FPS

  •    Jupyter

This is a project for Udacity self-driving car Nanodegree program. The aim of this project is to detect the vehicles in a dash camera video. The implementation of the project is in the file vehicle_detection.ipynb. This implementation is able to achieve 21FPS without batching processing. The final video output is here. In this README, each step in the pipeline will be explained in details.

LightNet - LightNet: Light-weight Networks for Semantic Image Segmentation (Cityscapes and Mapillary Vistas Dataset)

  •    Python

This repository contains the code (in PyTorch) for: "LightNet: Light-weight Networks for Semantic Image Segmentation " (underway) by Huijun Liu @ TU Braunschweig. Semantic Segmentation is a significant part of the modern autonomous driving system, as exact understanding the surrounding scene is very important for the navigation and driving decision of the self-driving car. Nowadays, deep fully convolutional networks (FCNs) have a very significant effect on semantic segmentation, but most of the relevant researchs have focused on improving segmentation accuracy rather than model computation efficiency. However, the autonomous driving system is often based on embedded devices, where computing and storage resources are relatively limited. In this paper we describe several light-weight networks based on MobileNetV2, ShuffleNet and Mixed-scale DenseNet for semantic image segmentation task, Additionally, we introduce GAN for data augmentation[17] (pix2pixHD) concurrent Spatial-Channel Sequeeze & Excitation (SCSE) and Receptive Field Block (RFB) to the proposed network. We measure our performance on Cityscapes pixel-level segmentation, and achieve up to 70.72% class mIoU and 88.27% cat. mIoU. We evaluate the trade-offs between mIoU, and number of operations measured by multiply-add (MAdd), as well as the number of parameters.

food-101-keras - Food Classification with Deep Learning in Keras / Tensorflow

  •    Jupyter

If you are reading this on GitHub, the demo looks like this. Please follow the link below to view the live demo on my blog. Convolutional Neural Networks (CNN), a technique within the broader Deep Learning field, have been a revolutionary force in Computer Vision applications, especially in the past half-decade or so. One main use-case is that of image classification, e.g. determining whether a picture is that of a dog or cat.


one-pixel-attack-keras - Keras reimplementation of "One pixel attack for fooling deep neural networks" using differential evolution on Cifar10 and ImageNet

  •    Jupyter

How simple is it to cause a deep neural network to misclassify an image if an attacker is only allowed to modify the color of one pixel and only see the prediction probability? Turns out it is very simple. In many cases, an attacker can even cause the network to return any answer they want. The following project is a Keras reimplementation and tutorial of "One pixel attack for fooling deep neural networks".

Deep-Learning-with-Keras - Code repository for Deep Learning with Keras published by Packt

  •    Jupyter

This is the code repository for Deep Learning with Keras, published by Packt. It contains all the supporting project files necessary to work through the book from start to finish. This book starts by introducing you to supervised learning algorithms such as simple linear regression, classical multilayer perceptron, and more sophisticated Deep Convolutional Networks. In addition, you will also understand unsupervised learning algorithms such as Autoencoders, Restricted Boltzmann Machines, and Deep Belief Networks. Recurrent Networks and Long Short Term Memory (LSTM) networks are also explained in detail. You will also explore image processing involving the recognition of handwritten digital images, the classification of images into different categories, and advanced object recognition with related image annotations. An example of the identification of salient points for face detection is also provided.

Mask_RCNN - Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow

  •    Python

This is an implementation of Mask R-CNN on Python 3, Keras, and TensorFlow. The model generates bounding boxes and segmentation masks for each instance of an object in the image. It's based on Feature Pyramid Network (FPN) and a ResNet101 backbone. The code is documented and designed to be easy to extend. If you use it in your research, please consider citing this repository (bibtex below). If you work on 3D vision, you might find our recently released Matterport3D dataset useful as well. This dataset was created from 3D-reconstructed spaces captured by our customers who agreed to make them publicly available for academic use. You can see more examples here.

clDNN - Compute Library for Deep Neural Networks (clDNN)

  •    C++

Compute Library for Deep Neural Networks (clDNN) is an open source performance library for Deep Learning (DL) applications intended for acceleration of DL Inference on Intel® Processor Graphics – including HD Graphics and Iris® Graphics. clDNN includes highly optimized building blocks for implementation of convolutional neural networks (CNN) with C and C++ interfaces. We created this project to enable the DL community to innovate on Intel® processors. Usages supported: Image recognition, image detection, and image segmentation.

t81_558_deep_learning - Washington University (in St

  •    Jupyter

Deep learning is a group of exciting new technologies for neural networks. Through a combination of advanced training techniques and neural network architectural components, it is now possible to create neural networks of much greater complexity. Deep learning allows a neural network to learn hierarchies of information in a way that is like the function of the human brain. This course will introduce the student to computer vision with Convolution Neural Networks (CNN), time series analysis with Long Short-Term Memory (LSTM), classic neural network structures and application to computer security. High Performance Computing (HPC) aspects will demonstrate how deep learning can be leveraged both on graphical processing units (GPUs), as well as grids. Focus is primarily upon the application of deep learning to problems, with some introduction mathematical foundations. Students will use the Python programming language to implement deep learning using Google TensorFlow and Keras. It is not necessary to know Python prior to this course; however, familiarity of at least one programming language is assumed. This course will be delivered in a hybrid format that includes both classroom and online instruction. This syllabus presents the expected class schedule, due dates, and reading assignments. Download current syllabus.

3D-convolutional-speaker-recognition - :speaker: Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

  •    Python

This repository contains the code release for our paper titled as "Text-Independent Speaker Verification Using 3D Convolutional Neural Networks". The link to the paper is provided as well. The code has been developed using TensorFlow. The input pipeline must be prepared by the users. This code is aimed to provide the implementation for Speaker Verification (SR) by using 3D convolutional neural networks following the SR protocol.

u-net - U-Net: Convolutional Networks for Biomedical Image Segmentation

  •    Python

This tutorial shows how to use Keras library to build deep neural network for ultrasound image nerve segmentation. More info on this Kaggle competition can be found on https://www.kaggle.com/c/ultrasound-nerve-segmentation. This deep neural network achieves ~0.57 score on the leaderboard based on test images, and can be a good staring point for further, more serious approaches.

tensorflow-image-detection - A generic image detection program that uses Google's Machine Learning library, Tensorflow and a pre-trained Deep Learning Convolutional Neural Network model called Inception

  •    Python

A generic image detection program that uses Google's Machine Learning library, Tensorflow and a pre-trained Deep Learning Convolutional Neural Network model called Inception. This model has been pre-trained for the ImageNet Large Visual Recognition Challenge using the data from 2012, and it can differentiate between 1,000 different classes, like Dalmatian, dishwasher etc. The program applies Transfer Learning to this existing model and re-trains it to classify a new set of images.

keras - Deep Learning library for Python. Runs on TensorFlow, Theano, or CNTK.

  •    Python

Keras is a high-level neural networks API, written in Python and capable of running on top of TensorFlow, CNTK, or Theano. It was developed with a focus on enabling fast experimentation. Being able to go from idea to result with the least possible delay is key to doing good research.

Tensorflow-Programs-and-Tutorials - Implementations of CNNs, RNNs, GANs, etc

  •    Jupyter

CNN's with Noisy Labels - This notebook looks at a recent paper that discusses how convolutional neural networks that are trained on random labels (with some probability) are still able to acheive good accuracy on MNIST. I thought that the paper showed some eye-brow raising results, so I went ahead and tried it out for myself. It was pretty amazing to see that even when training a CNN with random labels 50% of the time, and the correct labels the other 50% of the time, the network was still able to get a 90+% accuracy. Character Level RNN (Work in Progress) - This notebook shows you how to train a character level RNN in Tensorflow. The idea was inspired by Andrej Karpathy's famous blog post and was based on this Keras implementation. In this notebook, you'll learn more about what the model is doing, and how you can input your own dataset, and train a model to generate similar looking text.

keras-rcnn - Keras package for region-based convolutional neural networks (RCNNs)

  •    Python

keras-rcnn is the Keras package for region-based convolutional neural networks. The data is made up of a list of dictionaries corresponding to images.

regl-cnn - Digit recognition with Convolutional Neural Networks in WebGL

  •    Javascript

GPU accelerated handwritten digit recognition with regl. Note that this network will probably be slower than the corresponding network implemented on the CPU. This is because of the overhead associated with transferring data to and from the GPU. But in the future we will attempt implementing more complex networks in the browser, such as Neural Style, and then we think that we will see a significant speedup compared to the CPU.

Accord.NET - Machine learning, Computer vision, Statistics and general scientific computing for .NET

  •    CSharp

The Accord.NET project provides machine learning, statistics, artificial intelligence, computer vision and image processing methods to .NET. It can be used on Microsoft Windows, Xamarin, Unity3D, Windows Store applications, Linux or mobile.

Theano-Tutorials - Bare bones introduction to machine learning from linear regression to convolutional neural networks using Theano

  •    Python

Bare bones introduction to machine learning from linear regression to convolutional neural networks using Theano. Dataset It's worth noting that this library assumes that the reader has access to the mnist dataset. This dataset is freely available and is accessible through Yann LeCun's personal website.

applied-deep-learning-resources - A collection of research articles, blog posts, slides and code snippets about deep learning in applied settings

  •    

A collection of research articles, blog posts, slides and code snippets about deep learning in applied settings. Including trained models and simple methods that can be used out of the box. Mainly focusing on Convolutional Neural Networks (CNN) but Recurrent Neural Networks (RNN), deep Q-Networks (DQN) and other interesting architectures will also be listed. ImageNet is the most important image classification and localization competition. Other data sets with results can be found from here: "Discover the current state of the art in objects classification." [link].