gophernet - A simple from-scratch neural net written in Go

  •        13

This is a simple neural network built in Go. It is further discussed here and in Machine Learning with Go.



Related Projects

deep-learning-book - Repository for "Introduction to Artificial Neural Networks and Deep Learning: A Practical Guide with Applications in Python"

  •    Jupyter

Repository for the book Introduction to Artificial Neural Networks and Deep Learning: A Practical Guide with Applications in Python. Deep learning is not just the talk of the town among tech folks. Deep learning allows us to tackle complex problems, training artificial neural networks to recognize complex patterns for image and speech recognition. In this book, we'll continue where we left off in Python Machine Learning and implement deep learning algorithms in PyTorch.

practical-machine-learning-with-python - Master the essential skills needed to recognize and solve complex real-world problems with Machine Learning and Deep Learning by leveraging the highly popular Python Machine Learning Eco-system

  •    Jupyter

"Data is the new oil" is a saying which you must have heard by now along with the huge interest building up around Big Data and Machine Learning in the recent past along with Artificial Intelligence and Deep Learning. Besides this, data scientists have been termed as having "The sexiest job in the 21st Century" which makes it all the more worthwhile to build up some valuable expertise in these areas. Getting started with machine learning in the real world can be overwhelming with the vast amount of resources out there on the web. "Practical Machine Learning with Python" follows a structured and comprehensive three-tiered approach packed with concepts, methodologies, hands-on examples, and code. This book is packed with over 500 pages of useful information which helps its readers master the essential skills needed to recognize and solve complex problems with Machine Learning and Deep Learning by following a data-driven mindset. By using real-world case studies that leverage the popular Python Machine Learning ecosystem, this book is your perfect companion for learning the art and science of Machine Learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute Machine Learning systems and projects successfully.

php-ml - PHP-ML - Machine Learning library for PHP

  •    PHP

Fresh approach to Machine Learning in PHP. Algorithms, Cross Validation, Neural Network, Preprocessing, Feature Extraction and much more in one library. PHP-ML requires PHP >= 7.1.

spaCy - 💫 Industrial-strength Natural Language Processing (NLP) with Python and Cython

  •    Python

spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest research, and was designed from day one to be used in real products. spaCy comes with pre-trained statistical models and word vectors, and currently supports tokenization for 20+ languages. It features the fastest syntactic parser in the world, convolutional neural network models for tagging, parsing and named entity recognition and easy deep learning integration. It's commercial open-source software, released under the MIT license. 💫 Version 2.0 out now! Check out the new features here.

machine-learning-open-source - Monthly Series - Machine Learning Top 10 Open Source Projects

  •    Objective-C

Click "Watch/Star" to get an email notification once a month for Top 10 Machine Learning Open Source. Mybridge AI ranks articles by the number of shares, minutes read, and by its own machine learning algorithm.

tensorlayer - Deep Learning and Reinforcement Learning Library for Developers and Scientists

  •    Python

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides a large collection of customizable neural layers / functions that are key to build real-world AI applications. TensorLayer is awarded the 2017 Best Open Source Software by the ACM Multimedia Society. Simplicity : TensorLayer lifts the low-level dataflow interface of TensorFlow to high-level layers / models. It is very easy to learn through the rich example codes contributed by a wide community.

LSTM-Human-Activity-Recognition - Human Activity Recognition example using TensorFlow on smartphone sensors dataset and an LSTM RNN (Deep Learning algo)

  •    Jupyter

Compared to a classical approach, using a Recurrent Neural Networks (RNN) with Long Short-Term Memory cells (LSTMs) require no or almost no feature engineering. Data can be fed directly into the neural network who acts like a black box, modeling the problem correctly. Other research on the activity recognition dataset can use a big amount of feature engineering, which is rather a signal processing approach combined with classical data science techniques. The approach here is rather very simple in terms of how much was the data preprocessed. Let's use Google's neat Deep Learning library, TensorFlow, demonstrating the usage of an LSTM, a type of Artificial Neural Network that can process sequential data / time series.

ABAGAIL - The library contains a number of interconnected Java packages that implement machine learning and artificial intelligence algorithms

  •    Java

The library contains a number of interconnected Java packages that implement machine learning and artificial intelligence algorithms. These are artificial intelligence algorithms implemented for the kind of people that like to implement algorithms themselves. See Issues page.

pycm - Multi-class confusion matrix library in Python

  •    Python

PyCM is a multi-class confusion matrix library written in Python that supports both input data vectors and direct matrix, and a proper tool for post-classification model evaluation that supports most classes and overall statistics parameters. PyCM is the swiss-army knife of confusion matrices, targeted mainly at data scientists that need a broad array of metrics for predictive models and an accurate evaluation of large variety of classifiers. threshold is added in version 0.9 for real value prediction.

notes - Notes on data science, machine learning, artificial intelligence, history, and social science

  •    Jupyter

Notes on data science, machine learning, artificial intelligence, history, and social science. Site's html is in the master branch's /docs folder.

EmojiIntelligence - Neural Network built in Apple Playground using Swift

  •    Swift

I used this challenge to learn more about neural networks and machine learning. A neural network consists of layers, and each layer has neurons. My network has three layers: an input layer, a hidden layer, and an output layer. The input to my network has 64 binary numbers. These inputs are connected to the neurons in the hidden layer. The hidden layer performs some computation and passes the result to the output layer neuron out. This also performs a computation and then outputs a 0 or a 1. The input layer doesn’t actually do anything, they are just placeholders for the input value. Only the neurons in the hidden layer and the output layer perform computations. The neurons from the input layer are connected to the neurons in the hidden layer. Likewise, both neurons from the hidden layer are connected to the output layer. These kinds of layers are called fully-connected because every neuron is connected to every neuron in the next layer. Each connection between two neurons has a weight, which is just a number. These weights form the brain of my network. For the activation function in my network, I use the sigmoid function. Sigmoid is a mathematical function. The sigmoid takes in some number x and converts it into a value between 0 and 1. That is ideal for my purposes, since I am dealing with binary numbers. This will turn a linear equation into something that is non-linear. This is important because without this, the network wouldn’t be able to learn any interesting things. I have already mentioned that the input to this network are 64 binary numbers. I resize the drawn image to 8x8 pixels which makes together 64 pixels. I go through the image and check each pixel if the pixel has a pink color I add a 1 to my array else I add a 0. At the end I will have 64 binary numbers which I can add to my input layer.

sciblog_support - Support content for my blog

  •    Jupyter

This repo contains the projects, additional information and code to support my blog: sciblog. You can find a list of all the post I made in this file.

TensorFlow-Machine-Learning-Cookbook - Code repository for TensorFlow Machine Learning Cookbook by Packt

  •    Python

This is the code repository for TensorFlow Machine Learning Cookbook, published by Packt. It contains all the supporting project files necessary to work through the book from start to finish. TensorFlow is an open source software library for Machine Intelligence. The independent recipes in this book will teach you how to use TensorFlow for complex data computations and will let you dig deeper and gain more insights into your data than ever before. You’ll work through recipes on training models, model evaluation, sentiment analysis, regression analysis, clustering analysis, artificial neural networks, and deep learning – each using Google’s machine learning library TensorFlow.

Accord.NET - Machine learning, Computer vision, Statistics and general scientific computing for .NET

  •    CSharp

The Accord.NET project provides machine learning, statistics, artificial intelligence, computer vision and image processing methods to .NET. It can be used on Microsoft Windows, Xamarin, Unity3D, Windows Store applications, Linux or mobile.

ConvNetJS - Javascript implementation of Neural networks

  •    Javascript

ConvNetJS is a Javascript implementation of Neural networks, It currently supports Common Neural Network modules, Classification (SVM/Softmax) and Regression (L2) cost functions, A MagicNet class for fully automatic neural network learning (automatic hyperparameter search and cross-validatations), Ability to specify and train Convolutional Networks that process images, An experimental Reinforcement Learning module, based on Deep Q Learning.

NFStream - A Flexible Network Data Analysis Framework

  •    Python

NFStream is a Python package providing fast, flexible, and expressive data structures designed to make working with online or offline network data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world network data analysis in Python. Additionally, it has the broader goal of becoming a common network data processing framework for researchers providing data reproducibility across experiments. NFStream extracts +90 flow features and can convert it directly to a pandas Dataframe or a CSV file.

TensorFlow - Artificial Intelligence Library from Google

  •    C++

TensorFlow is a library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) that flow between them. This flexible architecture lets you deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device without rewriting code.

python-machine-learning-book - The "Python Machine Learning (1st edition)" book code repository and info resource

  •    Jupyter

This GitHub repository contains the code examples of the 1st Edition of Python Machine Learning book. If you are looking for the code examples of the 2nd Edition, please refer to this repository instead. What you can expect are 400 pages rich in useful material just about everything you need to know to get started with machine learning ... from theory to the actual code that you can directly put into action! This is not yet just another "this is how scikit-learn works" book. I aim to explain all the underlying concepts, tell you everything you need to know in terms of best practices and caveats, and we will put those concepts into action mainly using NumPy, scikit-learn, and Theano.