rl4j - Deep Reinforcement Learning for the JVM (Deep-Q, A3C)

  •        217

Deep Reinforcement Learning for the JVM

https://github.com/deeplearning4j/rl4j

Dependencies:

ch.qos.logback:logback-classic:1.1.2
ch.qos.logback:logback-core:1.1.2
org.slf4j:slf4j-api:1.7.12

Tags
Implementation
License
Platform

   




Related Projects

Hands-On-Reinforcement-Learning-With-Python - Master Reinforcement and Deep Reinforcement Learning using OpenAI Gym and TensorFlow

  •    Jupyter

Reinforcement Learning with Python will help you to master basic reinforcement learning algorithms to the advanced deep reinforcement learning algorithms. The book starts with an introduction to Reinforcement Learning followed by OpenAI and Tensorflow. You will then explore various RL algorithms and concepts such as the Markov Decision Processes, Monte-Carlo methods, and dynamic programming, including value and policy iteration. This example-rich guide will introduce you to deep learning, covering various deep learning algorithms. You will then explore deep reinforcement learning in depth, which is a combination of deep learning and reinforcement learning. You will master various deep reinforcement learning algorithms such as DQN, Double DQN. Dueling DQN, DRQN, A3C, DDPG, TRPO, and PPO. You will also learn about recent advancements in reinforcement learning such as imagination augmented agents, learn from human preference, DQfD, HER and many more.

tensorlayer - Deep Learning and Reinforcement Learning Library for Developers and Scientists

  •    Python

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides a large collection of customizable neural layers / functions that are key to build real-world AI applications. TensorLayer is awarded the 2017 Best Open Source Software by the ACM Multimedia Society. Simplicity : TensorLayer lifts the low-level dataflow interface of TensorFlow to high-level layers / models. It is very easy to learn through the rich example codes contributed by a wide community.

Deeplearning4J - Neural Net Platform in Java and Scala

  •    Java

Deeplearning4J is an open source, distributed neural net library written in Java and Scala. It integrates with Hadoop and Spark and runs on several backends that enable use of CPUs and GPUs. It provides versatile n-dimensional array class for Java and Scala.


deep-reinforcement-learning - Repo for the Deep Reinforcement Learning Nanodegree program

  •    Jupyter

This repository contains material related to Udacity's Deep Reinforcement Learning Nanodegree program. The tutorials lead you through implementing various algorithms in reinforcement learning. All of the code is in PyTorch (v0.4) and Python 3.

gym-starcraft - StarCraft environment for OpenAI Gym, based on Facebook's TorchCraft. (In progress)

  •    Python

Gym StarCraft is an environment bundle for OpenAI Gym. It is based on Facebook's TorchCraft, which is a bridge between Torch and StarCraft for AI research.Install OpenAI Gym and its dependencies.

basic_reinforcement_learning - An introduction series to Reinforcement Learning (RL) with comprehensive step-by-step tutorials

  •    Jupyter

This repository aims to provide an introduction series to reinforcement learning (RL) by delivering a walkthough on how to code different RL techniques. A quick background review of RL is available here.

agents - Efficient Batched Reinforcement Learning in TensorFlow

  •    Python

This project provides optimized infrastructure for reinforcement learning. It extends the OpenAI gym interface to multiple parallel environments and allows agents to be implemented in TensorFlow and perform batched computation. As a starting point, we provide BatchPPO, an optimized implementation of Proximal Policy Optimization. The algorithm to use is defined in the configuration and pendulum started here uses the included PPO implementation. Check out more pre-defined configurations in agents/scripts/configs.py.

ELF - An End-To-End, Lightweight and Flexible Platform for Game Research

  •    C++

ELF is an Extensive, Lightweight and Flexible platform for game research, in particular for real-time strategy (RTS) games. On the C++-side, ELF hosts multiple games in parallel with C++ threading. On the Python side, ELF returns one batch of game state at a time, making it very friendly for modern RL. In comparison, other platforms (e.g., OpenAI Gym) wraps one single game instance with one Python interface. This makes concurrent game execution a bit complicated, which is a requirement of many modern reinforcement learning algorithms. Besides, ELF now also provides a Python version for running concurrent game environments, by Python multiprocessing with ZeroMQ inter-process communication. See ./ex_elfpy.py for a simple example.

ai-resources - Selection of resources to learn Artificial Intelligence / Machine Learning / Statistical Inference / Deep Learning / Reinforcement Learning

  •    

Update April 2017: It’s been almost a year since I posted this list of resources, and over the year there’s been an explosion of articles, videos, books, tutorials etc on the subject — even an explosion of ‘lists of resources’ such as this one. It’s impossible for me to keep this up to date. However, the one resource I would like to add is https://ml4a.github.io/ (https://github.com/ml4a) led by Gene Kogan. It’s specifically aimed at artists and the creative coding community. This is a very incomplete and subjective selection of resources to learn about the algorithms and maths of Artificial Intelligence (AI) / Machine Learning (ML) / Statistical Inference (SI) / Deep Learning (DL) / Reinforcement Learning (RL). It is aimed at beginners (those without Computer Science background and not knowing anything about these subjects) and hopes to take them to quite advanced levels (able to read and understand DL papers). It is not an exhaustive list and only contains some of the learning materials that I have personally completed so that I can include brief personal comments on them. It is also by no means the best path to follow (nowadays most MOOCs have full paths all the way from basic statistics and linear algebra to ML/DL). But this is the path I took and in a sense it's a partial documentation of my personal journey into DL (actually I bounced around all of these back and forth like crazy). As someone who has no formal background in Computer Science (but has been programming for many years), the language, notation and concepts of ML/SI/DL and even CS was completely alien to me, and the learning curve was not only steep, but vertical, treacherous and slippery like ice.

async-rl - Replicating "Asynchronous Methods for Deep Reinforcement Learning" (http://arxiv

  •    Python

(2017/02/25) Now the A3C implementation in this repository has been ported into ChainerRL, a Chainer-based deep reinforcement learning library, with some enhancement such as support for continuous actions by Gaussian policies and n-step Q-learning, so I recommend using it instead of this repository. This is a repository where I attempt to reproduce the results of Asynchronous Methods for Deep Reinforcement Learning. Currently I have only replicated A3C FF/LSTM for Atari.

Meta-RL - Implementation of Meta-RL A3C algorithm

  •    Jupyter

Tensorflow implementation of Meta-RL A3C algorithm taken from Learning to Reinforcement Learn. For more information, as well as explainations of each of the experiments, see my corresponding Medium post. A3C is built from previous implementation available here.